Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,730)

Search Parameters:
Authors = Lin Lu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 12538 KiB  
Article
Study on Vibration Characteristics and Harmonic Suppression of an Integrated Electric Drive System Considering the Electromechanical Coupling Effect
by Yue Cui, Hong Lu, Jinli Xu, Yongquan Zhang and Lin Zou
Actuators 2025, 14(8), 386; https://doi.org/10.3390/act14080386 (registering DOI) - 4 Aug 2025
Abstract
The study of vibration characteristics and suppression methods in integrated electric drive systems of electric vehicles is of critical importance. To investigate these characteristics, both current harmonics within the motor and nonlinear factors within the drivetrain were considered. A 17-degrees-of-freedom nonlinear torsional–planar dynamic [...] Read more.
The study of vibration characteristics and suppression methods in integrated electric drive systems of electric vehicles is of critical importance. To investigate these characteristics, both current harmonics within the motor and nonlinear factors within the drivetrain were considered. A 17-degrees-of-freedom nonlinear torsional–planar dynamic model was developed, with electromagnetic torque and output speed as coupling terms. The model’s accuracy was experimentally validated, and the system’s dynamic responses were analyzed under different working conditions. To mitigate vibrations caused by torque ripple, a coordinated control strategy was proposed, combining a quasi-proportional multi-resonant (QPMR) controller and a full-frequency harmonic controller (FFHC). The results demonstrate that the proposed strategy effectively suppresses multi-order current harmonics in the driving motor, reduces torque ripple by 45.1%, and enhances transmission stability. In addition, the proposed electromechanical coupling model provides valuable guidance for the analysis of integrated electric drive systems. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 (registering DOI) - 4 Aug 2025
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

24 pages, 7547 KiB  
Article
Raising pH Reduces Manganese Toxicity in Citrus grandis (L.) Osbeck by Efficient Maintenance of Nutrient Homeostasis to Enhance Photosynthesis and Growth
by Rong-Yu Rao, Wei-Lin Huang, Hui Yang, Qian Shen, Wei-Tao Huang, Fei Lu, Xin Ye, Lin-Tong Yang, Zeng-Rong Huang and Li-Song Chen
Plants 2025, 14(15), 2390; https://doi.org/10.3390/plants14152390 - 2 Aug 2025
Viewed by 138
Abstract
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 [...] Read more.
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 (Mn2) or 500 (Mn500) μM Mn at a pH of 3 (P3) or 5 (P5) for 25 weeks. Raising pH mitigated Mn500-induced increases in Mn, iron, copper, and zinc concentrations in roots, stems, and leaves, as well as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, and zinc distributions in roots, but it mitigated Mn500-induced decreases in nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and boron concentrations in roots, stems, and leaves, as well as nutrient imbalance. Raising pH mitigated Mn500-induced necrotic spots on old leaves, yellowing of young leaves, decreases in seedling growth, leaf chlorophyll concentration, and CO2 assimilation (ACO2), increase in root dry weight (DW)/shoot DW, and alterations of leaf chlorophyll a fluorescence (OJIP) transients and related indexes. Further analysis indicated that raising pH ameliorated Mn500-induced impairment of nutrient homeostasis, leaf thylakoid structure by iron deficiency and competition of Mn with magnesium, and photosynthetic electron transport chain (PETC), thereby reducing Mn500-induced declines in ACO2 and subsequent seedling growth. These results validated the hypothesis that raising pH reduced Mn toxicity in ‘Sour pummelo’ seedlings by (a) reducing Mn uptake, (b) efficient maintenance of nutrient homeostasis under Mn stress, (c) reducing Mn excess-induced impairment of thylakoid structure and PEPC and inhibition of chlorophyll biosynthesis, and (d) increasing ACO2 and subsequent seedling growth under Mn excess. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

25 pages, 758 KiB  
Article
Writing Is Coding for Sustainable Futures: Reimagining Poetic Expression Through Human–AI Dialogues in Environmental Storytelling and Digital Cultural Heritage
by Hao-Chiang Koong Lin, Ruei-Shan Lu and Tao-Hua Wang
Sustainability 2025, 17(15), 7020; https://doi.org/10.3390/su17157020 (registering DOI) - 1 Aug 2025
Viewed by 216
Abstract
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage [...] Read more.
In the era of generative artificial intelligence, writing has evolved into a programmable practice capable of generating sustainable narratives and preserving cultural heritage through poetic prompts. This study proposes “Writing Is Coding ” as a paradigm for sustainability education, exploring how students engage with AI-mediated multimodal creation to address environmental challenges. Using grounded theory methodology with 57 twelfth-grade students from technology-integrated high schools, we analyzed their experiences creating environmental stories and digital cultural artifacts using MidJourney, Kling, and Sora. Data collection involved classroom observations, semi-structured interviews, and reflective journals, analyzed through systematic coding procedures (κ = 0.82). Five central themes emerged: writing as algorithmic design for sustainability (89.5%), emotional scaffolding for environmental awareness (78.9%), aesthetics of imperfection in cultural preservation (71.9%), collaborative dynamics in sustainable creativity (84.2%), and pedagogical value of prompt literacy (91.2%). Findings indicate that AI deepens environmental consciousness and reframes writing as a computational process for addressing global issues. This research contributes a theoretical framework integrating expressive writing with algorithmic thinking in AI-assisted sustainability education, aligned with SDGs 4, 11, and 13. Full article
Show Figures

Figure 1

16 pages, 2829 KiB  
Article
Axial Compression Behavior of Bamboo Scrimber-Filled Steel Tubular (BSFST) Column Under Different Loading Modes
by Ze Xing, Yang Wei, Kang Zhao, Jinwei Lu, Baoxing Wei and Yu Lin
Materials 2025, 18(15), 3607; https://doi.org/10.3390/ma18153607 (registering DOI) - 31 Jul 2025
Viewed by 116
Abstract
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo [...] Read more.
Bamboo scrimber is an environmentally friendly biomass building material with excellent mechanical properties. However, it is susceptible to delamination failure of the transverse fibers under compression, which limits its structural performance. To address this problem, this study utilizes steel tubes to encase bamboo scrimber, forming a novel bamboo scrimber-filled steel tubular column. This configuration enables the steel tube to provide effective lateral restraint to the bamboo material. Axial compression tests were conducted on 18 specimens, including bamboo scrimber columns and bamboo scrimber-filled steel tubular columns, to investigate the effects of steel ratio and loading mode (full-section and core loading) on the axial compression performance. The test results indicate that the external steel tubes significantly enhance the structural load-bearing capacity and deformation capacity. Primary failure modes of the composite columns include shear failure and buckling. The ultimate stress and strain of the structure are positively correlated with the steel ratio; as the steel ratio increases, the ultimate stress of the specimens can increase by up to 19.2%, while the ultimate strain can increase by up to 37.7%. The core-loading specimens exhibited superior load-bearing capacity and deformation ability compared to the full-section-loading specimens. Considering the differences in the curves for full-section and core loading, the steel tube confinement coefficient was introduced, and the predictive models for the ultimate stress and ultimate strain of the bamboo scrimber-filled steel tubular column were developed with accurate prediction. Full article
Show Figures

Figure 1

16 pages, 4461 KiB  
Article
Study on the Influence of Inducer Structure Change on Pump Cavitation Characteristics
by Zhengwei Wang, Wei Song, Xuanyi Lin, Yun Zhao and Yonggang Lu
Energies 2025, 18(15), 4059; https://doi.org/10.3390/en18154059 (registering DOI) - 31 Jul 2025
Viewed by 141
Abstract
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation [...] Read more.
Given that cryogenic pumps on liquefied natural gas (LNG) carriers are prone to cavitation under complex operating conditions, this paper examines the inducer of an LNG centrifugal pump to uncover how the inducer geometry affects both the cavitation behavior and internal flow-induced excitation at −163 °C. Through detailed numerical simulations, we evaluate the cavitation performance and flow excitation characteristics across a range of inducer designs, systematically varying the blade count, inlet and outlet angles, and blade wrap angle. Our results show that reducing the number of blades, together with properly optimized inlet/outlet and wrap angles, significantly enhances the cavitation resistance. These findings provide a solid theoretical basis and practical guidance for the engineering optimization of LNG ship pumps. Full article
Show Figures

Figure 1

18 pages, 3824 KiB  
Article
Prognostic Risk Model of Megakaryocyte–Erythroid Progenitor (MEP) Signature Based on AHSP and MYB in Acute Myeloid Leukemia
by Ting Bin, Ying Wang, Jing Tang, Xiao-Jun Xu, Chao Lin and Bo Lu
Biomedicines 2025, 13(8), 1845; https://doi.org/10.3390/biomedicines13081845 - 29 Jul 2025
Viewed by 269
Abstract
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between [...] Read more.
Background: Acute myeloid leukemia (AML) is a common and aggressive adults hematological malignancies. This study explored megakaryocyte–erythroid progenitors (MEPs) signature genes and constructed a prognostic model. Methods: Uniform manifold approximation and projection (UMAP) identified distinct cell types, with differential analysis between AML-MEP and normal MEP groups. Univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression selected biomarkers to build a risk model and nomogram for 1-, 3-, and 5-year survival prediction. Results: Ten differentially expressed genes (DEGs) related to overall survival (OS), six (AHSP, MYB, VCL, PIM1, CDK6, as well as SNHG3) were retained post-LASSO. The model exhibited excellent efficiency (the area under the curve values: 0.788, 0.77, and 0.847). Pseudotime analysis of UMAP-defined subpopulations revealed that MYB and CDK6 exert stage-specific regulatory effects during MEP differentiation, with MYB involved in early commitment and CDK6 in terminal maturation. Finally, although VCL, PIM1, CDK6, and SNHG3 showed significant associations with AML survival and prognosis, they failed to exhibit pathological differential expression in quantitative real-time polymerase chain reaction (qRT-PCR) experimental validations. In contrast, the downregulation of AHSP and upregulation of MYB in AML samples were consistently validated by both qRT-PCR and Western blotting, showing the consistency between the transcriptional level changes and protein expression of these two genes (p < 0.05). Conclusions: In summary, the integration of single-cell/transcriptome analysis with targeted expression validation using clinical samples reveals that the combined AHSP-MYB signature effectively identifies high-risk MEP-AML patients, who may benefit from early intensive therapy or targeted interventions. Full article
Show Figures

Figure 1

40 pages, 13570 KiB  
Article
DuSAFNet: A Multi-Path Feature Fusion and Spectral–Temporal Attention-Based Model for Bird Audio Classification
by Zhengyang Lu, Huan Li, Min Liu, Yibin Lin, Yao Qin, Xuanyu Wu, Nanbo Xu and Haibo Pu
Animals 2025, 15(15), 2228; https://doi.org/10.3390/ani15152228 - 29 Jul 2025
Viewed by 281
Abstract
This research presents DuSAFNet, a lightweight deep neural network for fine-grained bird audio classification. DuSAFNet combines dual-path feature fusion, spectral–temporal attention, and a multi-band ArcMarginProduct classifier to enhance inter-class separability and capture both local and global spectro–temporal cues. Unlike single-feature approaches, DuSAFNet captures [...] Read more.
This research presents DuSAFNet, a lightweight deep neural network for fine-grained bird audio classification. DuSAFNet combines dual-path feature fusion, spectral–temporal attention, and a multi-band ArcMarginProduct classifier to enhance inter-class separability and capture both local and global spectro–temporal cues. Unlike single-feature approaches, DuSAFNet captures both local spectral textures and long-range temporal dependencies in Mel-spectrogram inputs and explicitly enhances inter-class separability across low, mid, and high frequency bands. On a curated dataset of 17,653 three-second recordings spanning 18 species, DuSAFNet achieves 96.88% accuracy and a 96.83% F1 score using only 6.77 M parameters and 2.275 GFLOPs. Cross-dataset evaluation on Birdsdata yields 93.74% accuracy, demonstrating robust generalization to new recording conditions. Its lightweight design and high performance make DuSAFNet well-suited for edge-device deployment and real-time alerts for rare or threatened species. This work lays the foundation for scalable, automated acoustic monitoring to inform biodiversity assessments and conservation planning. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

12 pages, 3161 KiB  
Article
Evaluation of Poxvirus-Specific Antibody Response in Monkey Poxvirus-Negative and -Positive Cohorts
by Nannan Jia, Lin Ai, Yunping Ma, Chen Hua, Qi Shen, Chen Wang, Teng Li, Yingdan Wang, Yunyi Li, Yin Yang, Chi Zhou, Min Chen, Huanyu Wu, Xin Chen, Lu Lu, Yanqiu Zhou, Jinghe Huang and Fan Wu
Vaccines 2025, 13(8), 795; https://doi.org/10.3390/vaccines13080795 - 27 Jul 2025
Viewed by 325
Abstract
Objectives: Understanding the antibody response in monkeypox virus (MPXV)-infected and uninfected individuals is essential for developing next-generation MPXV vaccines. This study aimed to characterize neutralizing antibody (NAb) and antibody-dependent cellular cytotoxicity (ADCC) responses in both groups, providing insights into immune protection and vaccine [...] Read more.
Objectives: Understanding the antibody response in monkeypox virus (MPXV)-infected and uninfected individuals is essential for developing next-generation MPXV vaccines. This study aimed to characterize neutralizing antibody (NAb) and antibody-dependent cellular cytotoxicity (ADCC) responses in both groups, providing insights into immune protection and vaccine design. Methods: A recombinant vaccinia Tian Tan (VTT) virus was utilized to develop high-throughput luciferase-reporter-based neutralization and ADCC assays. These assays were applied to evaluate the presence and levels of poxvirus-specific antibodies in MPXV-infected and uninfected individuals, including those vaccinated with vaccinia-based vaccines. Results: Poxvirus-specific NAbs were detected in MPXV-negative individuals with prior vaccinia vaccination. However, MSM individuals exhibited significantly lower pre-existing NAb levels than non-MSM individuals, potentially contributing to their higher susceptibility to MPXV infection. In individuals with mild MPXV infection, robust NAb and ADCC responses were observed, regardless of vaccination status. Additionally, HIV-positive individuals demonstrated comparable antibody responses following MPXV infection. Conclusions: These findings highlight the potential role of pre-existing NAbs in MPXV susceptibility and the strong immune response elicited by mild MPXV infection. Further research is needed to determine whether MPXV-specific antibodies mitigate disease progression, which could inform the development of effective MPXV vaccines. Full article
(This article belongs to the Section Human Papillomavirus Vaccines)
Show Figures

Figure 1

22 pages, 642 KiB  
Article
Policy Tools, Policy Perception, and Compliance with Urban Waste Sorting Policies: Evidence from 34 Cities in China
by Yingqian Lin, Shuaikun Lu, Guanmao Yin and Baolong Yuan
Sustainability 2025, 17(15), 6787; https://doi.org/10.3390/su17156787 - 25 Jul 2025
Viewed by 351
Abstract
Promoting municipal solid waste (MSW) sorting is critical to advancing sustainable and low-carbon urban development. While existing research often focuses separately on external policy tools or internal behavioral drivers, limited attention has been given to their joint effects within an integrated framework. This [...] Read more.
Promoting municipal solid waste (MSW) sorting is critical to advancing sustainable and low-carbon urban development. While existing research often focuses separately on external policy tools or internal behavioral drivers, limited attention has been given to their joint effects within an integrated framework. This study addresses this gap by analyzing micro-survey data from 1983 residents across 34 prefecture-level and above cities in China, using a bivariate probit model to examine how policy tools and policy perception—both independently and interactively—shape residents’ active and passive compliance with MSW sorting policies. The findings reveal five key insights. First, the adoption and spatial distribution of policy tools are uneven: environment-type tools dominate, supply-type tools are moderately deployed, and demand-type tools are underutilized. Second, both policy tools and policy perception significantly promote compliance behaviors, with policy cognition exerting the strongest effect. Third, differential effects are observed—policy cognition primarily drives active compliance, whereas policy acceptance more strongly predicts passive compliance. Fourth, synergistic effects emerge when supply-type tools are combined with environment-type or demand-type tools. Finally, policy perception not only directly enhances compliance but also moderates the effectiveness of policy tools, with notable heterogeneity among residents with higher cognitive or emotional alignment. These findings contribute to a deeper understanding of compliance mechanisms and offer practical implications for designing perception-sensitive and regionally adaptive MSW governance strategies. Full article
Show Figures

Figure 1

16 pages, 2099 KiB  
Article
Clinical Characteristics and Epidemiological Features of Hepatitis E Virus Infection Among People Living with HIV in Shanghai, China
by Conglin Zhao, Yuanyuan Ji, Shuai Tao, Mengxin Lu, Yi Zhang, Weixia Li, Shuangshuang Sun, Han Zhao, Weijia Lin, Yuxian Huang, Qiang Li, Chong Chen and Liang Chen
Viruses 2025, 17(8), 1038; https://doi.org/10.3390/v17081038 - 25 Jul 2025
Viewed by 410
Abstract
Hepatitis E virus (HEV) poses a significant public health concern, particularly among immunocompromised populations. This study aimed to investigate HEV seroprevalence, clinical characteristics, and associated risk factors in people living with HIV (PLWH) in Shanghai, China. A retrospective analysis was conducted on serum [...] Read more.
Hepatitis E virus (HEV) poses a significant public health concern, particularly among immunocompromised populations. This study aimed to investigate HEV seroprevalence, clinical characteristics, and associated risk factors in people living with HIV (PLWH) in Shanghai, China. A retrospective analysis was conducted on serum IgG and IgM antibodies specific to HEV in 670 PLWH and 464 HIV-negative health-check attendees. The overall anti-HEV seropositivity rate among PLWH was 30.15% (202/670, 95% CI 26.68–33.62), with an IgG positivity rate of 30.00% (201/670, 95% CI 26.53–33.47). IgM positivity was observed in 1.19% (8/670, 95% CI 0.59–2.39) of PLWH, and dual IgM/IgG positivity was observed in 1.04% (7/670, 95% CI 0.50–2.16) of PLWH. The seropositivity rate of anti-HEV IgG in the HIV-negative health-check attendees was 17.67% (82/464, 95% confidence interval: 14.20–21.14), with no IgM positivity, which was significantly lower than that in PLWH (χ2 = 22.84, p < 0.001). Univariate and multivariate analyses identified advanced World Health Organization (WHO) HIV stage (III/IV) as an independent risk factor for HEV co-infection (p < 0.05). Notably, no significant associations were observed with age, gender, CD4 count, or liver function parameters. These findings underscore the importance of implementing HEV screening protocols and developing targeted preventive strategies for PLWH. Full article
Show Figures

Figure 1

27 pages, 1518 KiB  
Review
Application of Microbial Fermentation in Caffeine Degradation and Flavor Modulation of Coffee Beans
by Lu-Xia Ran, Xiang-Ying Wei, Er-Fang Ren, Jian-Feng Qin, Usman Rasheed and Gan-Lin Chen
Foods 2025, 14(15), 2606; https://doi.org/10.3390/foods14152606 - 24 Jul 2025
Viewed by 460
Abstract
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, [...] Read more.
Coffee is one of the most widely consumed beverages worldwide, primarily due to the stimulating effects attributed to its caffeine content. However, excessive intake of caffeine results in negative effects, including palpitations, anxiety, and insomnia. Therefore, low-caffeine coffee has captivated growing consumer interest, highlighting its significant market potential. Traditional decaffeination methods often lead to non-selective extraction, resulting in a loss of desirable flavor compounds, thereby compromising coffee quality. In recent years, microbial fermentation has emerged as a promising, targeted, and safe approach for reducing caffeine content during processing. Additionally, mixed-culture fermentation further enhances coffee flavor and overcomes the drawbacks of monoculture fermentation, such as low efficiency and limited flavor profiles. Nonetheless, several challenges are yet to be resolved, including microbial tolerance to caffeine and related alkaloids, the safety of fermentation products, and elucidation of the underlying mechanisms behind microbial synergy in co-cultures. This review outlines the variety of microorganisms with the potential to degrade caffeine and the biochemical processes involved in this process. It explores how microbes tolerate caffeine, the safety of metabolites produced during fermentation, and the synergistic effects of mixed microbial cultures on the modulation of coffee flavor compounds, including esters and carbonyls. Future directions are discussed, including the screening of alkaloid-tolerant strains, constructing microbial consortia for simultaneous caffeine degradation for flavor enhancement, and developing high-quality low-caffeine coffee. Full article
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
Salt Stress Responses of Different Rice Varieties at Panicle Initiation: Agronomic Traits, Photosynthesis, and Antioxidants
by Yusheng Li, Yuxiang Xue, Zhuangzhuang Guan, Zhenhang Wang, Daijie Hou, Tingcheng Zhao, Xutong Lu, Yucheng Qi, Yanbo Hao, Jinqi Liu, Lin Li, Haider Sultan, Xiayu Guo, Zhiyong Ai and Aibin He
Plants 2025, 14(15), 2278; https://doi.org/10.3390/plants14152278 - 24 Jul 2025
Viewed by 309
Abstract
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). [...] Read more.
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). Leveraging precision salinity-control facilities, this study imposed four salt stress gradients (0, 3, 5, and 7‰) to dissect the differential response mechanisms of six rice varieties (YXYZ: Yuxiangyouzhan, JLY3261: Jingliangyou3261, SLY91: Shuangliangyou91, SLY138: Shuangliangyou138, HLYYHSM: Hualiangyouyuehesimiao, and SLY11:Shuangliangyou111) during PI. The results revealed that increasing salinity significantly reduced tiller number (13.14–68.04%), leaf area index (18.58–57.99%), canopy light interception rate (11.91–44.08%), and net photosynthetic rate (2.63–52.42%) (p < 0.001), accompanied by reactive oxygen species (ROS)-induced membrane lipid peroxidation. Integrative analysis of field phenotypic and physiological indices revealed distinct adaptation strategies: JLY3261 rapidly activated antioxidant enzymes under 3‰ salinity, alleviating lipid peroxidation (no significant difference in H2O2 or malondialdehyde content compared to 0‰ salinity) and maintaining tillering and aboveground biomass. SLY91 tolerated 7‰ salinity via CAT/POD-mediated lipid peroxide degradation, with H2O2 and malondialdehyde contents increasing initially but decreasing with escalating stress. These findings highlight genotype-specific antioxidant strategies underlying salt-tolerance mechanisms and the critical need for integrating phenomics–physiological assessments at reproductive stages into salt-tolerance breeding pipelines. Full article
Show Figures

Figure 1

14 pages, 6297 KiB  
Article
Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition
by Yunzi Liu, Xiaoxiao Li, Shuaidan Lu, Jialiang Zhou, Shangkun Wu, Shengfeng Lin and Long Wang
Materials 2025, 18(15), 3465; https://doi.org/10.3390/ma18153465 - 24 Jul 2025
Viewed by 195
Abstract
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix ( [...] Read more.
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix (x = 0, 0.25, and 0.5) RHEAs were characterized using scanning electron microscopy (SEM), universal testing, microhardness testing, and tribological equipment. Experimental results manifested that Si addition induces the formation of the (Nb,Ta)5Si3 phase, and the volume fraction of the silicide phase increases with higher Si content, which significantly improves the alloy’s strength and hardness but deteriorates its plasticity. Enhanced wear resistance with Si addition is attributed to improved hardness and oxidation resistance. Tribological tests confirm that Si3N4 counterfaces are optimal for evaluating RHEA wear mechanisms. This work can provide guidance for the fabrication of RHEAs with excellent performance. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

16 pages, 1889 KiB  
Article
Untargeted Metabolomics Reveals Distinct Anthocyanin Profiles in Napier Grass (Pennisetum purpureum Schumach.) Cultivars
by Zhi-Yue Wang, Pei-Yin Lin, Chwan-Yang Hong, Kevin Chi-Chung Chou and Ting-Jang Lu
Foods 2025, 14(15), 2582; https://doi.org/10.3390/foods14152582 - 23 Jul 2025
Viewed by 248
Abstract
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for [...] Read more.
Plant secondary metabolites regulate plant growth and serve as valuable pharmaceutical resources. Napier grass (Pennisetum purpureum Schumach.), a Poaceae species, shows potential as a functional food. In this study, we employed high-resolution mass spectrometry combined with a data-independent acquisition (DIA) strategy for the untargeted detection of anthocyanins, a group of secondary metabolites, in napier grass. Clear MS2 fragmentation patterns were observed for anthocyanins, characterized by diagnostic aglycone signals and sequential losses of hexosyl (C6H10O5), deoxyhexosyl (C6H10O4), pentosyl (C5H8O4), and p-coumaroyl groups (C9H8O3). Based on matching with authentic standards and an in-house database, ten anthocyanins were identified, seven of which were newly reported in napier grass. In a single-laboratory validation analysis, both absolute and semi-quantitative results reliably reflected the specific distribution of metabolites across different cultivars and plant organs. The purple cultivar (TS5) exhibited the highest anthocyanin content, with the cyanidin 3-O-glucoside content reaching 5.0 ± 0.5 mg/g, whereas the green cultivar (TS2), despite its less pigmented appearance, contained substantial amounts of malvidin 3-O-arabinoside (0.7 ± <0.1 mg/g). Flavonoid profiling revealed that monoglycosylated anthocyanins were the dominant forms in floral tissues. These findings shed light on napier grass metabolism and support future Poaceae breeding and functional food development. Full article
(This article belongs to the Section Foodomics)
Show Figures

Graphical abstract

Back to TopTop