Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Authors = Kaijun Zhou

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 72870 KiB  
Article
Compact High-Scanning Rate Frequency Scanning Antenna Based on Composite Right/Left-Handed Transmission Line
by Zongrui He, Kaijun Song, Jia Yao and Yedi Zhou
J. Low Power Electron. Appl. 2025, 15(2), 18; https://doi.org/10.3390/jlpea15020018 - 28 Mar 2025
Viewed by 894
Abstract
This paper proposes a miniaturized frequency-scanning antenna with high scanning rate. To overcome the OSB (open stopband) of traditional leaky wave antenna, CRLH-TL (Composite Right/Left-Handed-Transmission Line) is adopted. Furthermore, an antenna unit consisting of two symmetrically curved microstrip lines with two short branches [...] Read more.
This paper proposes a miniaturized frequency-scanning antenna with high scanning rate. To overcome the OSB (open stopband) of traditional leaky wave antenna, CRLH-TL (Composite Right/Left-Handed-Transmission Line) is adopted. Furthermore, an antenna unit consisting of two symmetrically curved microstrip lines with two short branches is employed, whose second mode exhibits excellent transmission characteristics. The measurements demonstrate that the antenna can achieve scanning from −67.5° to 35.5° in the frequency band range of 5.65–6.5 GHz, with a scanning rate of 7.3. During scanning, the highest gain in the band is 12.3 dBi, the lowest is 10 dBi, and the gain fluctuation is within 2.3 dB, showing good scanning characteristics. Additionally, the length of the proposed antenna is approximately 3.84λ0 for a central frequency of 5.95 GHz. Full article
Show Figures

Figure 1

17 pages, 20655 KiB  
Article
Dietary Isatidis Root Residue Improves Diarrhea and Intestinal Function in Weaned Piglets
by Zhong Chen, Zenghao Yan, Siting Xia, Kaijun Wang, Qi Han, Miao Zhou, Deqin Wang, Jie Yin and Yulong Yin
Animals 2024, 14(19), 2776; https://doi.org/10.3390/ani14192776 - 26 Sep 2024
Cited by 1 | Viewed by 1193
Abstract
Weaning stress can trigger diarrhea, cause intestinal damage, and disrupt the intestinal flora of piglets, ultimately resulting in retarded growth or even the death of the animals. Traditional Chinese medicine residues encompass numerous bioactive compounds and essential nutrients; however, their efficient utilization remains [...] Read more.
Weaning stress can trigger diarrhea, cause intestinal damage, and disrupt the intestinal flora of piglets, ultimately resulting in retarded growth or even the death of the animals. Traditional Chinese medicine residues encompass numerous bioactive compounds and essential nutrients; however, their efficient utilization remains a challenge. Consequently, our study sought to explore the impact of traditional Chinese medicine residues, specifically Isatidis Root residue (IRR), on the growth performance, intestinal function, and occurrence of weaning diarrhea in newly weaned piglets. Forty healthy, castrated Duroc × Landrace × Yorkshire males, weaned at 21 days old and exhibiting similar body conditions, were randomly allocated into five groups, with eight piglets in each group. The results indicated that the dietary inclusion of IRR at concentrations ranging from 0.5% to 4.0% notably decreased the incidence of diarrhea in weaned piglets compared to the control group (p < 0.05). Serum LDL-C and globulin (GLB) contents were reduced in response to dietary IRR concentrations (0.5% to 4.0%), while serum albumin (ALB) and albumin/globulin (A/G) contents were enhanced (p < 0.05). Dietary 0.5%, 1.0%, and 2.0% IRR resulted in significant increases in villus height (VH) and villus height/crypt depth (V/C) ratios in the jejunum, V/C ratios in the ileum, and the number of villi goblet cells both in the jejunum and ileum. IRR also led to a significant decrease in the crypt depth (CD) of the jejunum and ileum (p < 0.05). Furthermore, the expression of IL-6 in the jejunum was significantly increased in IRR-fed piglets (0.5% to 4.0%) (p < 0.05). IRR demonstrated inhibitory effects on harmful bacteria in the gastrointestinal microbiome, including Campylobacter, Actinobacillus minor, and Ralstonia pickettii, indicating its broad-spectrum bacteriostatic properties. In conclusion, dietary IRR alleviated diarrhea in weaned piglets and improved gut function and microbial compositions. Full article
Show Figures

Figure 1

22 pages, 6915 KiB  
Article
Enhancing Significant Wave Height Retrieval with FY-3E GNSS-R Data: A Comparative Analysis of Deep Learning Models
by Zhenxiong Zhou, Boheng Duan, Kaijun Ren, Weicheng Ni and Ruixin Cao
Remote Sens. 2024, 16(18), 3468; https://doi.org/10.3390/rs16183468 - 18 Sep 2024
Cited by 1 | Viewed by 1245
Abstract
Significant Wave Height (SWH) is a crucial parameter in oceanographic research, essential for understanding various marine and atmospheric processes. Traditional methods for obtaining SWH, such as ship-based and buoy measurements, face limitations like limited spatial coverage and high operational costs. With the advancement [...] Read more.
Significant Wave Height (SWH) is a crucial parameter in oceanographic research, essential for understanding various marine and atmospheric processes. Traditional methods for obtaining SWH, such as ship-based and buoy measurements, face limitations like limited spatial coverage and high operational costs. With the advancement of Global Navigation Satellite Systems reflectometry (GNSS-R) technology, a new method for retrieving SWH has emerged, demonstrating promising results. This study utilizes Radio occultation sounder (GNOS) data from the FY-3E satellite and incorporates the latest Vision Transformer (ViT) technology to investigate GNSS-R-based SWH retrieval. We designed and evaluated various deep learning models, including ANN-Wave, CNN-Wave, Hybrid-Wave, Trans-Wave, and ViT-Wave. Through comparative training using ERA5 data, the ViT-Wave model was identified as the optimal retrieval model. The ViT-Wave model achieved a Root Mean Square Error (RMSE) accuracy of 0.4052 m and Mean Absolute Error (MAE) accuracy of 0.2700 m, significantly outperforming both traditional methods and newer deep learning approaches utilizing Cyclone Global Navigation Satellite Systems (CYGNSS) data. These results underscore the potential of integrating GNSS-R technology with advanced deep-learning models to enhance SWH retrieval accuracy and reliability in oceanographic research. Full article
Show Figures

Figure 1

13 pages, 5783 KiB  
Article
Detection of Gannan Navel Orange Ripeness in Natural Environment Based on YOLOv5-NMM
by Binbin Zhou, Kaijun Wu and Ming Chen
Agronomy 2024, 14(5), 910; https://doi.org/10.3390/agronomy14050910 - 26 Apr 2024
Cited by 7 | Viewed by 1883
Abstract
In order to achieve fast and accurate detection of Gannan navel orange fruits with different ripeness levels in a natural environment under all-weather scenarios and then to realise automated harvesting of Gannan navel oranges, this paper proposes a YOLOv5-NMM (YOLOv5 with Navel orange [...] Read more.
In order to achieve fast and accurate detection of Gannan navel orange fruits with different ripeness levels in a natural environment under all-weather scenarios and then to realise automated harvesting of Gannan navel oranges, this paper proposes a YOLOv5-NMM (YOLOv5 with Navel orange Measure Model) object detection model based on the improvement in the original YOLOv5 model. Based on the changes in the phenotypic characteristics of navel oranges and the Chinese national standard GB/T 21488-2008, the maturity of Gannan navel oranges is tested. And it addresses and improves the problems of occlusion, dense distribution, small target size, rainy days, and light changes in the detection of navel orange fruits. Firstly, a new detection head of 160 × 160 feature maps is constructed in the detection layer to improve the multi-scale target detection layer of YOLOv5 and to increase the detection accuracy of the different maturity levels of Gannan navel oranges of small sizes. Secondly, a convolutional block attention module is incorporated in its backbone layer to capture the correlations between features in different dimensions to improve the perceptual ability of the model. Then, the weighted bidirectional feature pyramid network structure is integrated into the Neck layer to improve the fusion efficiency of the network on the feature maps and reduce the amount of computation. Lastly, in order to reduce the loss of the target of the Gannan Navel Orange due to occlusion and overlapping, the detection frame is used to remove redundancy using the Soft-NMS algorithm to remove redundant candidate frames. The results show that the accuracy rate, recall rate, and average accuracy of the improved YOLOv5-NMM model are 93.2%, 89.6%, and 94.2%, respectively, and the number of parameters is only 7.2 M. Compared with the mainstream network models, such as Faster R-CNN, YOLOv3, the original model of YOLOv5, and YOLOv7-tiny, it is superior in terms of the accuracy rate, recall rate, and average accuracy mean, and also performs well in terms of the detection rate and memory occupation. This study shows that the YOLOv5-NMM model can effectively identify and detect the ripeness of Gannan navel oranges in natural environments, which provides an effective exploration of the automated harvesting of Gannan navel orange fruits. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

14 pages, 4880 KiB  
Article
Dual-Band Large-Frequency Ratio Power Divider Using Mode Composite Transmission Line for 5G Communication Systems
by Kaijun Song, Lele Fang and Yedi Zhou
J. Low Power Electron. Appl. 2024, 14(2), 20; https://doi.org/10.3390/jlpea14020020 - 31 Mar 2024
Viewed by 2058
Abstract
In this paper, a novel kind of mode composite transmission line (MC-TL) is proposed, and a dual-band power divider with a large frequency ratio using this novel MC-TL for 5G communication systems was developed. The proposed MC-TL was developed using spoof surface plasmon [...] Read more.
In this paper, a novel kind of mode composite transmission line (MC-TL) is proposed, and a dual-band power divider with a large frequency ratio using this novel MC-TL for 5G communication systems was developed. The proposed MC-TL was developed using spoof surface plasmon polaritons (SSPPs) and a corrugated substrate-integrated waveguide (CSIW) transmission line, which supports both a surface plasmon mode and TE10 mode, independently. The surface plasmon mode operates in the grooves of the surface metal layer, while the TE10 mode works in the substrate between two metal layers. These two parts can transmit different modes at independent frequencies. This structure can be used in dual-band transmission lines with a high frequency ratio. The characteristics and design of the MC-TL (SSPPs and CSIW) are analyzed and illustrated. The MC-TL was fabricated and measured to demonstrate its performance. Moreover, based on the proposed MC-TL, a dual-band power divider with a large frequency ratio (operating at 3 GHz and 28 GHz simultaneously) was also designed and fabricated. It can cover the frequency of a fifth-generation communication system perfectly. The measured outcomes align closely with the simulated results, demonstrating robust agreement and showcasing excellent transmission capabilities. Full article
Show Figures

Figure 1

21 pages, 3880 KiB  
Review
Sialylation: A Cloak for Tumors to Trick the Immune System in the Microenvironment
by Xiaoman Zhou, Kaijun Chi, Chairui Zhang, Quan Liu and Ganglong Yang
Biology 2023, 12(6), 832; https://doi.org/10.3390/biology12060832 - 8 Jun 2023
Cited by 15 | Viewed by 4932
Abstract
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is [...] Read more.
The tumor microenvironment (TME), where the tumor cells incite the surrounding normal cells to create an immune suppressive environment, reduces the effectiveness of immune responses during cancer development. Sialylation, a type of glycosylation that occurs on cell surface proteins, lipids, and glycoRNAs, is known to accumulate in tumors and acts as a “cloak” to help tumor cells evade immunological surveillance. In the last few years, the role of sialylation in tumor proliferation and metastasis has become increasingly evident. With the advent of single-cell and spatial sequencing technologies, more research is being conducted to understand the effects of sialylation on immunity regulation. This review provides updated insights into recent research on the function of sialylation in tumor biology and summarizes the latest developments in sialylation-targeted tumor therapeutics, including antibody-mediated and metabolic-based sialylation inhibition, as well as interference with sialic acid–Siglec interaction. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

18 pages, 797 KiB  
Article
A Multi-Party Functional Signatures Scheme for Private Blockchain
by Quan Zhou, Yulong Zheng, Kaijun Wei, Minhui Chen and Zhikang Zeng
Cryptography 2023, 7(2), 21; https://doi.org/10.3390/cryptography7020021 - 12 Apr 2023
Cited by 5 | Viewed by 3888
Abstract
Digital signature technology is essential for ensuring the authenticity and unforgeability of transactions in a private blockchain framework. In some scenarios, transactions require verification from multiple parties, each of whom needs to authenticate different parts of the transaction. To address this issue, researchers [...] Read more.
Digital signature technology is essential for ensuring the authenticity and unforgeability of transactions in a private blockchain framework. In some scenarios, transactions require verification from multiple parties, each of whom needs to authenticate different parts of the transaction. To address this issue, researchers have developed multi-party ECDSA (Elliptic Curve Digital Signature Algorithm) signature schemes. However, these schemes either need to consider the authentication of different parts of the transaction or generate an aggregated signature. This paper proposes a novel solution that combines functional signatures and multi-party ECDSA signatures to create a multi-party functional signature for private blockchains. Compared to previous constructions, the proposed scheme ensures that each part of the transaction is verified. Furthermore, when the aggregate signature of the entire transaction cannot be verified, this scheme identifies the specific part of the transaction for which the signature authentication fails instead of rejecting the entire transaction. This paper uses a smart contract to securely deploy the proposed scheme and authenticate the f in functional signatures. The constructed scheme also provides security under the existential unforgeability of the ECDSA signature, even if n1 parties are corrupted, assuming a total of n parties. The scheme of this paper successfully conducted experiments on a personal computer, with three users taking approximately 343 ms, six users taking 552 ms, and nine users taking 791 ms. Full article
(This article belongs to the Special Issue Cyber Security, Cryptology and Machine Learning)
Show Figures

Figure 1

14 pages, 3786 KiB  
Article
Expression of a Siglec-Fc Protein and Its Characterization
by Kaijun Chi, Huilin Xu, Hanjie Li, Ganglong Yang, Xiaoman Zhou and Xiao-Dong Gao
Biology 2023, 12(4), 574; https://doi.org/10.3390/biology12040574 - 10 Apr 2023
Cited by 1 | Viewed by 2936
Abstract
The emerging importance of the Siglec-sialic acid axis in human disease, especially cancer, has necessitated the identification of ligands for Siglecs. Recombinant Siglec-Fc fusion proteins have been widely used as ligand detectors, and also as sialic acid-targeted antibody-like proteins for cancer treatment. However, [...] Read more.
The emerging importance of the Siglec-sialic acid axis in human disease, especially cancer, has necessitated the identification of ligands for Siglecs. Recombinant Siglec-Fc fusion proteins have been widely used as ligand detectors, and also as sialic acid-targeted antibody-like proteins for cancer treatment. However, the heterogenetic properties of the Siglec-Fc fusion proteins prepared from various expression systems have not been fully elucidated. In this study, we selected HEK293 and CHO cells for producing Siglec9-Fc and further evaluated the properties of the products. The protein yield in CHO (8.23 mg/L) was slightly higher than that in HEK293 (7.46 mg/L). The Siglec9-Fc possesses five N-glycosylation sites and one of them is located in its Fc domain, which is important for the quality control of protein production and also the immunogenicity of Siglec-Fc. Our glycol-analysis confirmed that the recombinant protein from HEK293 received more fucosylation, while CHO showed more sialylation. Both products revealed a high dimerization ratio and sialic acid binding activity, which was confirmed by the staining of cancer cell lines and bladder cancer tissue. Finally, our Siglec9-Fc product was used to analyze the potential ligands on cancer cell lines. Full article
Show Figures

Graphical abstract

19 pages, 995 KiB  
Article
A Robust and Effective Two-Factor Authentication (2FA) Protocol Based on ECC for Mobile Computing
by Kaijun Liu, Zhou Zhou, Qiang Cao, Guosheng Xu, Chenyu Wang, Yuan Gao, Weikai Zeng and Guoai Xu
Appl. Sci. 2023, 13(7), 4425; https://doi.org/10.3390/app13074425 - 30 Mar 2023
Cited by 6 | Viewed by 5368
Abstract
The rapid development of mobile computing (e.g., mobile health, mobile payments, and smart homes) has brought great convenience to our lives. It is well-known that the security and privacy of user information from these applications and services is critical. Without the prevention provided [...] Read more.
The rapid development of mobile computing (e.g., mobile health, mobile payments, and smart homes) has brought great convenience to our lives. It is well-known that the security and privacy of user information from these applications and services is critical. Without the prevention provided by an authentication mechanism, safety vulnerabilities may accumulate, such as illegal intrusion access resulting in data leakage and fraudulent abuse. Luckily, the two-factor authentication (2FA) protocols can secure access and communication for mobile computing. As we understand it, existing 2FA authentication protocols weaken security in the pursuit of high efficiency. How efficiency can be achieved while preserving the protocol’s security remains a challenge. In this study, we designed a robust and effective 2FA protocol based on elliptic curve cryptography (ECC) for authentication of users and service providers. We proved the robustness (respectively, the effectiveness) of the presented protocol with the heuristic analysis and security verification provided by the ProVerif tool (respectively, with a performance comparison based on six schemes). Performance comparisons in terms of message rounds, communication, and computation overheads showed that our scheme was superior to the exiting schemes or comparable as a whole; i.e., only two rounds, 1376 bits, and 1.818 ms were required in our scheme, respectively. The evaluation results showed that the proposed 2FA protocol provides a better balance between security and availability compared to state-of-the-art protocols. Full article
(This article belongs to the Special Issue Research on Security and Privacy in IoT and Big Data)
Show Figures

Figure 1

10 pages, 3250 KiB  
Communication
A Truck-Borne System Based on Cold Atom Gravimeter for Measuring the Absolute Gravity in the Field
by Helin Wang, Kainan Wang, Yunpeng Xu, Yituo Tang, Bin Wu, Bing Cheng, Leyuan Wu, Yin Zhou, Kanxing Weng, Dong Zhu, Peijun Chen, Kaijun Zhang and Qiang Lin
Sensors 2022, 22(16), 6172; https://doi.org/10.3390/s22166172 - 18 Aug 2022
Cited by 26 | Viewed by 3451
Abstract
The cold atom gravimeter (CAG) has proven to be a powerful quantum sensor for the high-precision measurement of gravity field, which can work stably for a long time in the laboratory. However, most CAGs cannot operate in the field due to their complex [...] Read more.
The cold atom gravimeter (CAG) has proven to be a powerful quantum sensor for the high-precision measurement of gravity field, which can work stably for a long time in the laboratory. However, most CAGs cannot operate in the field due to their complex structure, large volume and poor environmental adaptability. In this paper, a home-made, miniaturized CAG is developed and a truck-borne system based on it is integrated to measure the absolute gravity in the field. The measurement performance of this system is evaluated by applying it to measurements of the gravity field around the Xianlin reservoir in Hangzhou City of China. The internal and external coincidence accuracies of this measurement system were demonstrated to be 35.4 μGal and 76.7 μGal, respectively. Furthermore, the theoretical values of the measured eight points are calculated by using a forward modeling of a local high-resolution digital elevation model, and the calculated values are found to be in good agreement with the measured values. The results of this paper show that this home-made, truck-borne CAG system is reliable, and it is expected to improve the efficiency of gravity surveying in the field. Full article
Show Figures

Figure 1

9 pages, 3503 KiB  
Article
650 W All-Fiber Single-Frequency Polarization-Maintaining Fiber Amplifier Based on Hybrid Wavelength Pumping and Tapered Yb-Doped Fibers
by Wanpeng Jiang, Changsheng Yang, Qilai Zhao, Quan Gu, Jiamin Huang, Kui Jiang, Kaijun Zhou, Zhouming Feng, Zhongmin Yang and Shanhui Xu
Photonics 2022, 9(8), 518; https://doi.org/10.3390/photonics9080518 - 25 Jul 2022
Cited by 13 | Viewed by 2766
Abstract
Based on hybrid wavelength pumping and tapered Yb-doped fibers (T-YDFs), a 650 W all-fiber single-frequency polarization-maintaining fiber amplifier was demonstrated experimentally at 1030 nm. Different pump power ratios in the T-YDF-based power-amplifier stage were proposed to investigate their influence on the transverse mode [...] Read more.
Based on hybrid wavelength pumping and tapered Yb-doped fibers (T-YDFs), a 650 W all-fiber single-frequency polarization-maintaining fiber amplifier was demonstrated experimentally at 1030 nm. Different pump power ratios in the T-YDF-based power-amplifier stage were proposed to investigate their influence on the transverse mode instability (TMI) effect. The highest TMI threshold was obtained when the pump power ratio of 940 nm to 976 nm was 1:4.4. A measured M2 factor of 1.7 and a polarization extinction ratio of 14 dB at the maximum output power were obtained. To the best of our knowledge, these results exhibit the highest output power of any all-fiber single-frequency polarization-maintaining fiber amplifiers created up to now. Full article
(This article belongs to the Special Issue Rare-Earth-Doped Fiber Lasers and Amplifiers)
Show Figures

Figure 1

13 pages, 2398 KiB  
Article
Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity
by Luyan Zhou, Zhao Zhang, Weijie Zhang, Kaijun An, Xiaohui Lei and Ming He
Water 2022, 14(13), 2070; https://doi.org/10.3390/w14132070 - 28 Jun 2022
Cited by 6 | Viewed by 2646
Abstract
Changes in the opening of gates in open channel water transfer projects will cause fluctuations in the water level and flow of adjacent open channels and thus bring great challenges for real-time water level prediction. In this paper, a novel slope-similar shape method [...] Read more.
Changes in the opening of gates in open channel water transfer projects will cause fluctuations in the water level and flow of adjacent open channels and thus bring great challenges for real-time water level prediction. In this paper, a novel slope-similar shape method is proposed for real-time water level prediction when the change of gate opening at the next moment is known. The water level data points of three consecutive moments constitute the query. The slope similarity is used to find the historical water level datasets with similar change trend to the query, and then the best slope similarity dataset is determined according to the similarity index and the gate opening change. The water level difference of the next moment of the best similar data point is the water level difference of the predicted moment, and thus the water level at the next moment can be obtained. A case study is performed with the Middle Route of the South-to-North Water Diversion Project of China. The results show that 87.5% of datasets with a water level variation of less than 0.06 m have an error less than 0.03 m, 71.4% of which have an error less than 0.02 m. In conclusion, the proposed method is feasible, effective, and interpretable, and the study provides valuable insights into the development of scheduling schemes. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

9 pages, 2469 KiB  
Article
A 102 W High-Power Linearly-Polarized All-Fiber Single-Frequency Laser at 1560 nm
by Jiamin Huang, Qilai Zhao, Junjie Zheng, Chengzi Huang, Quan Gu, Wanpeng Jiang, Kaijun Zhou, Changsheng Yang, Zhouming Feng, Qinyuan Zhang, Zhongmin Yang and Shanhui Xu
Photonics 2022, 9(6), 396; https://doi.org/10.3390/photonics9060396 - 4 Jun 2022
Cited by 11 | Viewed by 3426
Abstract
A 1560 nm high-power linearly-polarized all-fiber single-frequency narrow-linewidth laser with near diffraction-limited beam quality is demonstrated. The Yb–Er energy transfer efficiency and the ability of the signal laser to capture pump light have been improved by specifically choosing the pumping wavelength and the [...] Read more.
A 1560 nm high-power linearly-polarized all-fiber single-frequency narrow-linewidth laser with near diffraction-limited beam quality is demonstrated. The Yb–Er energy transfer efficiency and the ability of the signal laser to capture pump light have been improved by specifically choosing the pumping wavelength and the input signal power in the final power amplifier stage of this laser system. Under the off-peak absorption pumping wavelength of 940 nm, along with the maximum input signal power of 6 W, a maximum output power of 102 W with a slope efficiency of 40.5% is acquired. At the highest output power status, a polarization extinction ratio (PER) of 15.5 dB, a linewidth of 3.05 kHz, and a beam quality of Mx2 = 1.14, My2 = 1.06 are obtained, respectively. This advanced single-frequency fiber laser has great potential for the long-range coherent Doppler lidar and the next generation of gravitational wave detection. Full article
(This article belongs to the Special Issue Rare-Earth-Doped Fiber Lasers and Amplifiers)
Show Figures

Figure 1

18 pages, 12408 KiB  
Article
Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants
by Mohan Liu, Lei Chen, Kaijun Jiang, Xiaohui Zhou, Zongyang Zhang, Hanyu Zhou, Weijia Wang, Lijun Yang and Yuguang Niu
Energies 2021, 14(5), 1308; https://doi.org/10.3390/en14051308 - 27 Feb 2021
Cited by 4 | Viewed by 2557
Abstract
In recent years, natural draft dry cooling systems with only one tower have been adopted in some 2 × 660 MW power-generating units owing to the advantage of lower construction costs. The operating cases of two power-generating units and one power-generating unit will [...] Read more.
In recent years, natural draft dry cooling systems with only one tower have been adopted in some 2 × 660 MW power-generating units owing to the advantage of lower construction costs. The operating cases of two power-generating units and one power-generating unit will both appear based on the power load requirement, which may lead to very different flow and heat transfer performances of this typical cooling system. Therefore, this research explores the local thermo-flow characteristics of air-cooled heat exchangers and sectors, and then analyzes the overall cooling performance of the above two operating cases under various wind conditions. Using the numerical modeling method, the results indicate that the flow and heat transfer performance of this cooling system decreases significantly in the case of one unit with half sectors dismissed. At wind speeds lower than 8 m/s, the difference in turbine back pressure between two units and one unit appears obviously higher than in other wind conditions, even reaching 4.37 kPa. Furthermore, the air-cooled heat exchanger in the lower layer always has better cooling capability than that in the upper layer, especially in conditions where there is an absence of wind and under low wind speeds. The operating case of one unit is not recommended for this dry cooling system because of the highly decreased energy efficiency. In conclusion, this research could provide theoretical support for the engineering operation of this typical natural draft dry cooling system in 2 × 660 MW power plants. Full article
Show Figures

Figure 1

18 pages, 10848 KiB  
Article
Influence and Sensitivity of Temperature and Microstructure on the Fluctuation of Creep Properties in Ni-Base Superalloy
by Zhihao Yao, Biao Zhou, Kaijun Yao, Hongying Wang, Jianxin Dong and Theresa Davey
Materials 2020, 13(21), 4758; https://doi.org/10.3390/ma13214758 - 24 Oct 2020
Cited by 8 | Viewed by 3020
Abstract
In this work, the sensitivity zone of microstructure and temperature for precipitation-strengthened nickel-based superalloys, used for turbine applications in aero-engines, has been firstly established. Heat treatment experiments with different solution temperatures were carried out. The microstructure evolution and creep residual strain sensitivity, low [...] Read more.
In this work, the sensitivity zone of microstructure and temperature for precipitation-strengthened nickel-based superalloys, used for turbine applications in aero-engines, has been firstly established. Heat treatment experiments with different solution temperatures were carried out. The microstructure evolution and creep residual strain sensitivity, low cycle fatigue properties, and tensile properties are analyzed, and the essential reason for the fluctuation of the mechanical properties of nickel-based superalloys was revealed. The main results obtained are as follows: following subsolvus solution heat treatment with a temperature of 1020 °C, samples have a high primary γ′I phase content, which is beneficial to low creep residual strain. Above the supersolvus solution temperature of 1040 °C, the creep residual strain value and low cycle fatigue performance fluctuate significantly. The essential reason for the dramatic fluctuation of performance is the presence of γ′ phases in different sizes and quantities, especially following the solution heat treatment in the temperature-sensitive zone of the γ′I phase, which is likely to cause huge fluctuations in the microstructure of tertiary γ′III phases. A zone of particular sensitivity in terms of temperature and microstructure for the γ′I phase is proposed. The range of suitable solution temperatures are discussed. In order to maintain stable mechanical properties without large fluctuations, the influence of the sensitivity within this temperature and microstructure zone on the γ′ phase should be considered. Full article
(This article belongs to the Special Issue Phase Transformation and Properties of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop