
Citation: Zhou, Q.; Zheng, Y.; Wei, K.;

Chen, M.; Zeng, Z. A Multi-Party

Functional Signatures Scheme for

Private Blockchain. Cryptography

2023, 7, 21. https://doi.org/10.3390/

cryptography7020021

Academic Editor: Josef Pieprzyk

Received: 1 March 2023

Revised: 4 April 2023

Accepted: 10 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

A Multi-Party Functional Signatures Scheme for
Private Blockchain
Quan Zhou 1,*, Yulong Zheng 1, Kaijun Wei 2, Minhui Chen 2 and Zhikang Zeng 1

1 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;
2112115056@e.gzhu.edu.cn (Y.Z.)

2 School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
* Correspondence: zhouqq@gzhu.edu.cn

Abstract: Digital signature technology is essential for ensuring the authenticity and unforgeability of
transactions in a private blockchain framework. In some scenarios, transactions require verification
from multiple parties, each of whom needs to authenticate different parts of the transaction. To
address this issue, researchers have developed multi-party ECDSA (Elliptic Curve Digital Signature
Algorithm) signature schemes. However, these schemes either need to consider the authentication
of different parts of the transaction or generate an aggregated signature. This paper proposes a
novel solution that combines functional signatures and multi-party ECDSA signatures to create
a multi-party functional signature for private blockchains. Compared to previous constructions,
the proposed scheme ensures that each part of the transaction is verified. Furthermore, when the
aggregate signature of the entire transaction cannot be verified, this scheme identifies the specific
part of the transaction for which the signature authentication fails instead of rejecting the entire
transaction. This paper uses a smart contract to securely deploy the proposed scheme and authenticate
the f in functional signatures. The constructed scheme also provides security under the existential
unforgeability of the ECDSA signature, even if n− 1 parties are corrupted, assuming a total of n
parties. The scheme of this paper successfully conducted experiments on a personal computer, with
three users taking approximately 343 ms, six users taking 552 ms, and nine users taking 791 ms.

Keywords: functional signatures; private blockchain; multi-signature; smart contract; ECDSA signature

1. Introduction

Recently, blockchain has played a significant role in various fields, including fi-
nance [1–3], IoT [4,5], and decentralized storage [6] due to its decentralization, immutability,
and traceability properties. The development of blockchain in cryptocurrency has made it
a modern network technology [7]. Bitcoin [8], as blockchain 1.0, has successfully deployed
and applied the ECDSA (Elliptic Curve Digital Signature Algorithm scheme), gaining wider
attention and gradually becoming the default signature mechanism of current mainstream
blockchain platforms and projects. Some blockchains, such as Ethereum [9] as Blockchain
2.0 and Hyperledger Fabric, have been proposed to make blockchain more flexible and
perform better. Smart contracts, as the core technology of Ethereum [9], can be seen as
computer programs that perform all contract-related operations autonomously, with corre-
sponding results. The validity and authenticity of the contract operations can be checked on
the Ethereum account. Deploying smart contracts can realize some special operations in the
blockchain system. A private blockchain is a permission-based network that limits usage to
specific organizations or individuals. Unlike public blockchains, private blockchains allow
only authorized users or organizations to join, and their transaction data are restricted to
authorized viewing. The efficient development of any network technology must consider
its network security factors [10–15], and the signature technology of cryptography can
effectively solve some security problems in the blockchain.

Cryptography 2023, 7, 21. https://doi.org/10.3390/cryptography7020021 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7020021
https://doi.org/10.3390/cryptography7020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0003-1494-9148
https://doi.org/10.3390/cryptography7020021
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7020021?type=check_update&version=2

Cryptography 2023, 7, 21 2 of 18

Functional signatures, a new type of signature introduced by Boyle, Goldwasser, and
Ivan [16], have some properties that standard signatures do not have. In a functional
signatures scheme, there are two private keys, a private key that can sign any message
belonging to the message space called the master private key, and another one that can sign
information defined in the scope of the function f . The owner of the master private key can
use the master private key to generate a functional signing private key sk f for function f .
The owner can allow others to use the functional signing private key sk f to sign messages
in the range of f . The above gives the functional signatures the property of fine-grained
access control, and the property is beneficial for multiple users. For example, there is a
document that can be noted as message m. The primary user with the master private key
can sign the m. The primary user only allows other users to modify some of the information
in the document. It issues some functions f for other users, and others can sign the f (m) to
modify part of the document. Based on [16], Backes [17] proposed delegatable functional
signatures and achieved the application of delegation using functional signatures. In the
functional signatures scheme, the master key and the signing key sk f of function f are
generated by one user. Once this user is corrupted, it will cause much damage. The new
scheme called decentralized multi-authority functional signatures, which supports non-
monotone access structures using inner-product relations, was introduced by Okamoto
and Takashima [18] to address this type of problem.

In private blockchain systems, private keys are essential for users to control their cryp-
tocurrency and are the basis for implementing privacy protection schemes. If a malicious
attacker illegally steals a private blockchain user’s signature private key, they can transfer
the user’s cryptocurrency arbitrarily or impersonate the user to publish illegal transaction
information. This can lead to severe economic loss problems [19]. Some multiple signature
schemes have been proposed to solve this problem. MacKenzie [20] initially proposed a
two-party signature scheme for DSA that enables two signing parties to generate a valid
DSA signature for a given public key. Neither party can complete the signature alone, and
no reconstruction of the private key is required during the signing process. Lindell [21]
proposed a two-party ECDSA signature scheme based on the Paillier homomorphic encryp-
tion algorithm. This scheme utilizes the Paillier homomorphic property to complete the
signature process and improve efficiency directly. Castagnos [22] introduced hash proof
systems technology to replace the Paillier homomorphic of Lindell [21] and completed the
security proof. In addition to the two-party ECDSA signature scheme, multi-party thresh-
old ECDSA signature schemes have also been proposed. Lindell [23] designed a secure
privacy multiplication protocol for extending the original two-party signature scheme into
a multi-party threshold signature scheme. Doerner [24] also designed a multi-party thresh-
old signature scheme by extending the two-party signature. Gennaro [25] designed the
MtA protocol based on Paillier homomorphic encryption and proposed a new multi-party
threshold ECDSA signature scheme based on this protocol. However, these schemes use a
homomorphic encryption algorithm or oblivious transfer (OT) protocol used in two-party
signature schemes, so they have high computational and communication overheads. The
above-distributed signatures are all multiple parties signing the same message, and none
can solve the problem of fine-grained authentication of partial information. For example,
in a technology company, various departments may need to authenticate specific project
parts before uploading them to the company’s private blockchain. However, the methods
noted above do not allow for this level of fine-grained authentication, as they only produce
an aggregated signature. This paper uses the ECDSA scheme as a standard signature in
functional signatures and constructs a system model based on functional signatures with
multiple parties for private blockchain. The proposed scheme enables multiple parties to
sign different parts of the message and collaborate to produce a signature for the message.
It can effectively solve the example described above. It can solve some real problems about
fine-grained security authentication of multiple parties. The contributions of this paper are
as follows:

Cryptography 2023, 7, 21 3 of 18

• This paper proposes a novel scheme that combines functional signatures and multi-
party ECDSA signatures to create a multi-party functional signature for private
blockchains. Compared to the previous scheme, the proposed scheme ensures that
each part of the transaction is verified. Moreover, in cases where the aggregate sig-
nature of the entire transaction cannot be verified, this scheme identifies the precise
portion of the transaction where signature authentication fails rather than rejecting
the transaction in its entirety.

• This paper ensures the security and authenticity of function f in the function signature
by embedding it in a smart contract using blockchain’s smart contract technology.

• This paper provides proof of the security of the constructed scheme. Under the
existence of the unforgeability of ECDSA signatures, the proposed scheme is secure
even if it is corrupted in n− 1 parties (assuming a total of n parties).

2. Related Work

The security of network technology has always been a frontier worthy of research.
Shaukat [26,27] summarized the cyber security issues regarding the rapidly evolving
technologies. For the development of blockchain security, Halpin [28] proposed an in-
troduction to security and privacy on the blockchain. As blockchain technology evolves,
many researchers have recognized cryptography as essential for analyzing and addressing
blockchain security concerns. Li [29] utilized puncturable signatures in cryptography to
resolve the issue of long-range attacks in the blockchain’s Proof of Stake protocol. Sig-
nature technology is the core of cryptography. It can effectively solve many blockchain
security problems.

The use of signature technology to protect the security and privacy of the blockchain
has been studied by many scholars. Zhu et al. [30] proposed an interactive incontestable
signature for transactions of blockchain, which ensures that the transactions were certified
by the dealer and are non-repudiable. Mercer [31] applied ring signatures to the blockchain,
enabling privacy protection for the blockchain users themselves. Gong et al. [32] proposed
an anonymous traceability protocol based on group signature; the protocol guaranteed the
anonymity of blockchain transactions. The design of multiple signatures in blockchain can
effectively solve the problem of multi-party verification and decentralization of blockchain
transactions. Kogias et al. [33] proposed a collective signing scheme to improve the security
and performance of Bitcoin, but it was not very efficient. Zhou et al. [34] proposed a
distributed account management scheme for Bitcoin, which aims to protect the private
key of a user’s account. Alangot et al. [35] introduced a spanning-tree topology to scale
Schnorr multi-signature, which could enhance the consistency of the blockchain. Yu [36]
proposed a method to combine Schnorr multi-signature and blockchain to ensure privacy
and security of data in the Internet of Things. Maxwell [37] constructed a new Schnorr
multi-signature scheme, which could improve both performance and user privacy in
Bitcoin. Yu [38] also proposed an elliptic curve threshold signature scheme for blockchain,
which has relatively high efficiency compared to other multi-party signatures of elliptic
curves. Xiao [39] proposed a secure and efficient multi-signature scheme for Fabric, and
Uganya [40] proposed a modified elliptic curve cryptography multi-signature scheme to
enhance security in cryptocurrency. The detailed comparison is shown in Table 1.

All of the above blockchain multi-signature schemes only generate one signature
collaboratively by multiple parties, without considering the fine-grained authentication of
partial transaction data by a single party before collaboratively generating a single signature.
So far, no scheme has considered fine-grained authentication of transactions in the private
blockchain along with multiple signatures. This paper proposes a multi-party functional
signatures scheme based on ECDSA signature that can solve the aforementioned problems.

Cryptography 2023, 7, 21 4 of 18

Table 1. Comparison of different multi-signatures.

Scheme Efficiency Blockchain Provable Security Against Collusion Attack

[24] low no yes no
[33] low yes uncertain no
[34] low yes uncertain yes
[37] high yes yes yes
[38] high yes yes no
[39] high yes yes yes
[40] high yes yes yes

3. Preliminaries

Some basic definitions and notational concepts are as follows.

3.1. ECDSA Signature

ECDSA signature is divided into four steps, which include Setup, KeyGen, SigGen,
and Verify. Setup is responsible for generating the system parameters, KeyGen generates the
public–private key pairs of the scheme, SigGen represents the signing process, and Verify
represents the verification process of the signature. The detailed steps are shown below.
Setup: On inputting the security parameter, the system outputs public parameters
param = {E, Fp, G, P, p, q, H}, where E is an elliptic curve defined over a finite field Fp,
p is a prime and G is an additive cyclic group consisting of all points in E; P is the generator
of the group G, and q is the prime order of the group G. Finally, H is a cryptographic hash
function denoted as H : {0, 1}∗ → Z∗q and Z∗q is the field consisting of the set of integers
{1, 2, . . . , q − 1}.
KeyGen: On inputting the public parameter param, the following two steps generate the
signed public–private key pair.

• Choose a random integer d ∈ Z∗q as secret key.
• Compute the Q = d · P as public key.

SigGen: On inputting the public parameter param, the signing secret key d, and the message
m, output the signature of message m δ = (r, s). The steps for generating a signature are
as follows.

• Randomly select integer k ∈ Z∗q .
• Compute R = k · P = (rx, ry), where R is a point on the elliptic curve E.
• Compute r = rx mod q, and if/when r is 0, return to the first step to reselect k.
• Compute s1 = k−1(e + dr) mod q, where e = H(m).
• Output the generated signature δ = (r, s), where s = min{q− s1, s1}.
Verify: On inputting the message m to be verified and it’s signature δ, output 0 or 1 (0 means
failure, 1 means success). The steps for verifying a signature are as follows.

• Check whether the integers r and s belong to Z∗q . If they do not belong, terminate the
verification; otherwise, execute next step.

• Compute e = H(m).
• Compute R′ = s−1(eP + rQ) = (rx′ , ry′) to verify signature.
• When r = rx′ mod q, output 1, otherwise output 0.

3.2. Functional Signatures

Definition 1. Functional signatures (FS) scheme for a message spaceM and a function family
F = { f : D f →M}; it has four algorithms as follows.

• FS.Setup (1λ)→ (Msk, Mvk) : On inputting a parameter 1λ, it can output the master
signing key Msk and the master verification key Mvk.

• FS.KeyGen(Msk,f)→ sk f : On inputting the master signing key and a function f ∈ F ,
it outputs the signing key sk f for f .

Cryptography 2023, 7, 21 5 of 18

• FS.Sign(f,sk f ,m)→ (f (m), σ) : On inputting the function f ∈ F , generated signing
key sk f , and the message m ∈ D f that needs to be signed, it outputs the pair signature
(f (m), σ).

• FS.Verify(Mvk,m∗,σ) → {0, 1} : On inputting the master verification key Mvk, a
message m∗ and a signature σ, where m∗ = f (m), it outputs 1 or 0, where 1 indicates
that the signature is valid.

3.3. Security Definition

Definition 2. Unforgeability: The functional signatures is unforgeable if the advantage of any PPT
algorithm A in the following game is negligible:

• The challenger runs (Msk, Mvk)← FS.Setup(1λ) and sends Mvk to adversary A.

• Adversary A is allowed to query the key generation oracle and a signing oracle; they
are noted as Ok and Osig. The challenger initializes a dictionary indexed by tuples
(f , i) ∈ F ×N , which contained the signing keys: ski

f ←FS.KeyGen(Msk,f). This
dictionary records the keys that were previously generated in the Unforgivability
game. Ok and Osig are defined as follows:

- Ok: On inputting (f , i), the challenger runs as follows:

1. If there is an entry for (f , i) in the dictionary, then the corresponding key
ski

f is output.

2. Otherwise, by ski
f ← FS.KeyGen(Msk,f) sample a fresh key, add the (f , i)→

ski
f to the dictionary in order to update it, and output ski

f .

- Osig: On inputting (f , i, m), the challenger runs as follows:

1. If there is an entry for (f , i, m) in the dictionary, then the corresponding
signature σ→ FS.Sign(f,ski

f ,m) is output.

2. Otherwise, by ski
f ← FS.KeyGen(Msk,f) sample a fresh key, add the (f , i)→

ski
f to the dictionary, and the corresponding signature σ→ FS.Sign(f,ski

f ,m)
is output.

- The adversary wins the game if it can output a signature (m∗, σ) such that:

1. FS.Verify(Mvk,m∗, σ) = 1.
2. There does not exist m such that m∗ = f (m) for any f that was sent as a

query to the key generation oracle Ok.
3. There does not exist a (f , m) that was queried to the signing oracle Osig and

m∗ = f (m).

3.4. Smart Contract

In a private blockchain system, the smart contract is compiled by the Solidity language
and each different node represents a different private blockchain account. The smart
contract is a type of computer protocol that can be executed through the account. Briefly,
the smart contract is a computer program that has been compiled and deployed on the
private blockchain. The process of deploying smart contracts is shown in Figure 1.

Cryptography 2023, 7, 21 6 of 18

Figure 1. Smart contract deploy and invoke process on the private blockchain.

4. Proposed System Model and Multi-Party Functional Signatures Method

This section gives the concrete system architecture framework proposed in this paper.
Moreover, it gives the specific setup of the scheme and the construction of smart contracts
to run.

4.1. System Model Framework

The concrete system model is shown in Figure 2. When a transaction in the private
blockchain requires fine-grained collaborative authentication by multiple nodes, the full
nodes prefer to send the parameter of the signature scheme to each mining node. A
complete transaction is recorded as Data, and a partial transaction is recorded as Datai.
The detailed steps are described below:

Figure 2. The framework of the system model.

• Gateway nodes manage the function f of functional signatures using smart contracts.
• Each mining node checks different Datai of Data, divided by function f of functional

signatures. After that, the signature signaturei corresponding to the respective Datai
is generated. Gateway nodes manage the function f of functional signatures using
smart contracts.

• After receiving all partial transaction signatures signaturei, an aggregated signature
Signature is generated and stored in the block header.

• Full nodes can search for all the transaction signatures stored in the blockchain.

Cryptography 2023, 7, 21 7 of 18

• Validator nodes check the correctness of the queried signature. Once an error occurs
in the signature stored in the block header, the partial transaction signature signaturei
stored in the block body can be queried and checked.

As is shown in Figure 3, the final aggregated signature is stored in the block header, and
the signatures generated for different transactions are stored in the respective transactions.
The validator nodes can query the signatures of the different transactions from full nodes
and verify that the signatures are valid.

Figure 3. Simple block structure.

4.2. Smart Contract Settings and Proposed Concrete Scheme

This subsection gives the specific smart contract setup and scheme construction.

4.2.1. Smart Contract Design

This section introduces the concrete process of deployment and invocation of smart
contracts and related algorithms. Some special variables are used in the algorithm of
smart contracts: authorizeAccount is a set of trusted private blockchain accounts (nodes of
private blockchain), functionSet stores all functions f of functional signatures, ct.sender is
the account, and f.Set stores the account of who can use f . The specific definitions of these
variables are as follows:

• authorizeAccount: When deploying the smart contract, the gateway nodes collect all
legal account identity information. All these accounts consist of authorizeAccount.

• functionSet: The set stores all the functions f of functional signatures. Functions
f of functional signatures that do not belong to functionSet are prohibited from
being invoked.

• ct.sender: This invokes the contract’s account.
• f.Set: All functions that are stored in functionSet have a set f.Set, and some accounts

are stored in it. If ct.sender does not belong to f.Set, it cannot use f .

The concrete algorithm for the contract is as follows:
invokeF(f): Algorithm 1 can be executed by legitimate accounts. The gateway nodes

determine whether the function f invoked by this node is legitimate by the returned value.
addUser(f ,ct.sender): Algorithm 2 shows that the system model can dynamically

endow nodes with the use of function f .
deleteUser(f ,ct.sender): Algorithm 3 shows that the system model can dynamically

reject the node’s use of the function f .

Cryptography 2023, 7, 21 8 of 18

Algorithm 1: invokeF(f)
Input: f
Output: bool
if ct.sender does not exist in authorizeAccount then

throw;
end
if f does not exist in functionSet then

return false;
else

if ct.sender does not exist in f.Set then
return false;

else
return true;

end
end

Algorithm 2: addUser(f ,ct.sender)
Input: f ,ct.sender
Output: bool
if f does not exist in functionSet then

return false;
else

if ct.sender has exist in f.Set then
return false;

else
f.set[ct.sender]⇐ true;
return true;

end
end

Algorithm 3: deleteUser(f ,ct.sender)
Input: f ,ct.sender
Output: bool
if f does not exist in functionSet then

return false;
else

if ct.sender has not exist in f.Set then
return false;

else
f.set[ct.sender]⇐ false;
return true;

end
end

4.2.2. Concrete Multi-Party Functional Signatures Scheme

This paper now describes the details of the multi-party functional signatures (MFS)
scheme. This paper denotes the setup phase, the key generation phase, the signature
phase, and the verification phase of the scheme as MFS.Setup, MFS.KeyGen, MFS.Sign, and
MFS.Verify.

• MFS.Setup: The full node first selects the security parameter λ and runs the Setup
algorithm of the ECDSA signature to generate public parameters param = {E, Fp, G, P,

Cryptography 2023, 7, 21 9 of 18

p, q, H}, then randomly selects d← Z∗q as the master private key Msk and computes
the master public key d · P as Mvk. The full node chooses n random numbers di and
computes dn+1 = d−∑n

i=1 di, where satisfies ∑n+1
i=1 di = d.

• MFS.KeyGen: Each mining node Ai initiates a request to the full node, and then the full
node sends the di to mining node Ai by a secure channel. Each mining node Ai selects
ki ← Z∗q randomly to send to the full node by Diffie–Hellman key exchange. The full
node computes k = ∏n

i=1 ki and k · P = (rx, ry), where k is stored in the full node and
k · P is sent to each mining node Ai. Let {v1, v2, · · · , vn−1} be chosen randomly by the
full node, and vn is computed by

vn = k−1 −
n−1

∑
i=1

vi. (1)

Each mining node sends H(Aidi) to the full node, where Aidi is the identification
information of node Ai. The full node stores {di, vi, H(Aidi)}i∈[1,n] securely. The full
node randomly selects Xji ← Z∗q and computes Xij = divj + djvi − Xji. Two nodes
Ai and Aj receive Xij and Xji, respectively, by Diffie–Hellman key exchange, where
they satisfy

Xij + Xji = divj + djvi. (2)

Each mining node computes

Xi = divi +
n

∑
j=1,j 6=i

Xij. (3)

The public key of mining node Ai is XiP. Each mining node Ai gets vi by Diffie–Hellman
key exchange as a part of the private key sk and invokes a smart contract to verify the
authenticity of fi. The full node signs for fi|vki by the Msk and SigGen algorithms of
the ECDSA signature, the signature of fi|vki is noted as σvki

. Creating the certificate
ci = (fi, vki, σvki

), the private key ski
f of node Ai is ski

f = (Xi, ci).

• MFS.Sign: To sign the message m, all the nodes start to get e = H(m) and compute

sigi = e · vi + rx · Xi. (4)

The signature generated by each mining node Ai is σi = (m∗i , m, ci, sigi), where
m∗i = fi(m). The full node receives sigi from all nodes and calculates
sign+1 = k−1rxdn+1 using the internally saved dn+1. Finally, the output is the
Sig = ∑n+1

i=1 sigi.
• MFS.Verify: For overall transactions, the data of the transactions verifier can verify

signature Sig by using the Verify algorithm of the ECDSA signature. If the data of
transactions verifier needs to check the authenticity of the signature of node Ai, he
can check that:

1. m∗ ?
= fi(m);

2. Whether σvki
is valid by the Verify algorithm of the ECDSA signature and Mvk.

• Correctness: The correctness of the signature for node Ai is guaranteed by the ECDSA
signature algorithm. The following equation determines the correctness of Sig:

Cryptography 2023, 7, 21 10 of 18

Sig =
n+1

∑
i=1

sigi

=
n

∑
i=1

(e · vi + rx · Xi) + sign+1

= e
n

∑
i=1

vi + rx

n

∑
i=1

Xi + sign+1

= ek−1 + rx

n

∑
i=1

(divi +
n

∑
j=1,j 6=i

Xij) + sign+1

= ek−1 + rx

n

∑
i=1

dik−1 + sign+1

= k−1(e + rx

n

∑
i=1

di) + k−1rxdn+1

= k−1(e + rxd)

(5)

5. Security Analysis

This section uses the security model of [10] and give proof of the security of the
multi-party functional signatures scheme and system model.

Theorem 1. If the signature scheme ECDSA is existentially unforgeable under chosen message
attacks, then the proposed multi-party functional signatures scheme as specified above satisfies the
unforgeability requirement for functional signatures.

Proof of Theorem 1. In the unforgeability game, one can define a PPT adversary noted as
AMS, who can be allowed to make a query to the two random oracles denoted Ok and Osig.
Then create a set [N] to represent all nodes. Let S be the subset of [N] and satisfy that the
nodes in S are honest. The set of corrupted nodes is denoted as S′:=[N]\S. Assume that
Q(λ) is the polynomial number and AMS only can query Q(λ) times in the oracles Ok and
Osig. This game can useAMS as a subroutine to construct another adversary BMS such that,
if adversary AMS wins in the unforgeability game for multi-party functional signatures
with non-negligible probability, then it can show that BMS can break the unforgeability
game of the ECDSA signature scheme, which is assumed to be unforgeable against the
chosen message attack.

For AMS to win the unforgeability game of multi-party functional signatures, either it
can generate a final signature Sig by corrupting a dishonest node or simply produce the
signature σi of honest node Ai, where σi = (m∗i , m, (fi, vki, σvki

), sigi) such that:

• For each Ai ∈ S ′, sigi is a valid signature of m under the verification key vki.
• For each Ai ∈ S ′, σvki

is a valid signature of fi|vki under the master public key Mvk.
• fi(m) = m∗ for all i.
• AMS has not sent a query of form (f ′i , i)i∈{i|(Ai∈S)} for all i to the oracle Ok, and m∗ is

in the range of the f ′i .
• AMS has not sent a query of form (f ′i , i, m′)i∈{i|(Ai∈S)} for all i to the oracle Osig.

Let us discuss the first situation, where the sigi can be produced by AMS, where
i ∈ {i|Ai ∈ S}. It can assume that there are n-1 corrupted nodes of which the only
uncorrupted node is noted as Ai∗ . There are two types of forgery:

• Type I forgery: The tuples (fi∗ , vki∗) satisfy that fi∗ |vki∗ has not already been signed
under the master key Mvk for queries from AMS to the oracles Ok and Osig.

• Type II forgery: The tuples (fi∗ , vki∗) satisfy that fi∗ |vki∗ has been signed under the
master key Mvk for queries from AMS to the oracles Ok and Osig.

Cryptography 2023, 7, 21 11 of 18

This game now can denote another adversary BMS by the above. It first assumes that
the all signatures with Mvk generated by oracles Ok and Osig can be used as intermediate
steps for responding to the AMS’s queries. In the unforgeability game for the ECDSA
scheme, it defines that BMS wins the unforgeability game only if he can output forged
signatures successfully for a message that was not queried ORegsig , where ORegsig is a oracle
BMS can use; vksig is a verification key used by BMS.

As a challenger, BMS needs to interact with AMS in the unforgeability game for
multi-party functional signatures; BMS must simulate the oraclesOk andOsig in order to in-
teracting with BMS, and BMS tosses a coin b to guess the type of forgeryAMS will generate.

Case 1: b = 1: BMS guesses that AMS will produce a Type I forgery:
During interacting with AMS, BMS sets the vksig as the master verification key in this

simulation; BMS generates and maintains a dictionary indexed by tuples (fi, i) to simulate
the oracles Ok and Osig. Adversary AMS will respond to the BMS’s queries as follows:

• Ok((fi, i)i 6=i∗):

- If there exists an entry for the tuple (fi, i) in the dictionary, then output the
corresponding value ski∗

f .

- Otherwise, BMS randomly selects di∗ ← Z∗q as ski∗ , and computes di∗P as vki∗ ;
BMS obtains σvki∗ ← ORegsig from his oracle, and return ski

f = (ski∗ , σvki
) to AMS.

He also updates the dictionary by adding the entry (fi, i).

• Osig((f , i, m)i 6=i∗):

- If there exists an entry for the tuple (fi, i) in the dictionary, it has the
ski

f = (ski, σvki
). He can generate a signature Sig ← ORegsig . Because he

knows all about the corrupted nodes, he can output σi = (m∗i , m, ci, sigi), where
ci = (fi, vki, σvki

) and sigi = Sig−∑n
j=1,j 6=i∗ sigj.

- Otherwise, BMS randomly selects di∗ ← Z∗q as ski∗ , and computes di∗P as vki∗ ;
BMS obtains σvki∗ ← ORegsig from his oracle, and updates the dictionary by adding
the entry (fi, i). He then generates Sig by ORegsig , and outputs
σi∗ = (m∗i∗ , ci∗ , sigi∗), where ci∗ = (fi∗ , vki∗ , σvki∗) and sigi∗ = Sig−∑n

i=1,i 6=i∗ sigi.

Finally, AMS outputs the signatures σj and Sig, where σj = (m∗j , m, (f j, vk j, σvkj
), sigj);

BMS then outputs the (f j|vk j, σvkj
) as a forged signature in the unforgeability game for

ECDSA scheme.

Case 2: b = 0: BMS guesses that AMS will produce a Type II forgery:
Here, BMS randomly selects d ← Z∗q as master private key Msk and computes dP

as the master public key Mvk. Then BMS generates di, k ← Z∗q , k · p = (rx, ry),vi and Xi,
where di and vi satisfy that ∑n

i=1 di = d and ∑n
i=1 vi = k−1, respectively; BMS can compute

XiP as vki and sends the vki of all nodes to AMS along with the Xi of the specified set S of
corrupt nodes. In addition, BMS guesses a value i∗ between 1 and Q(λ) as a special index
of signing queries of multi-party functional signatures where the challenge verification key
will be embedded. This game uses a variate denoted as Numkeys to indicate the numbers
of signing keys already generated and initializes Numkeys = 0. Adversary BMS maintains
a dictionary indexed by tuples (fi, i) for responding to the queries of AMS; BMS responses
to the queries issued by BMS as follows:

• Ok(fi, i):

- If there exists an entry for the tuple (fi, i) in the dictionary with the value
CHA, abort.

- If there exists an entry for the tuple (fi, i) in the dictionary with a value that is
not CHA, output the key ski

f .

Cryptography 2023, 7, 21 12 of 18

- Otherwise, BMS randomly selects di ← Z∗q as ski, and computes diP as vki; BMS

generates the σvki
by himself and returns ski

f = (ski, σvki
) toAMS. He also updates

the dictionary by adding the entry (fi, i).

• Osig(f , i, m):

- If there exists an entry for the tuple (fi, i) in the dictionary, ski
f = (ski, σvki

). He
generates a signature Sig by himself, and outputs σi = (m∗i , m, ci, sigi), where
ci = (fi, vki, σvki

) and sigi = Sig−∑n
j=1,j 6=i∗ sigj.

- If there is no the tuple (fi, i) in the dictionary, and Numkeys 6= i∗, BMS gen-
erates a new key pair by randomly choosing the di ← Z∗q as ski and comput-
ing diP as vki; BMS signs fi|vki to generate σvki

by using Msk, and sets tuple
(fi, i) in his dictionary to ski

f . He then generates the signature Sig on message
m by using Msk, outputs σi = (m∗i , m, ci, sigi), where ci = (fi, vki, σvki

) and
sigi = Sig−∑n

j=1,j 6=i∗ sigj, and sets Numkeys = Numkeys + 1.
- If there is no tuple (fi, i) in the dictionary and Numkeys = i∗, or if the tu-

ple (fi, i) in the dictionary is set to CHA, BMS then generates the signature
of m under Mvk′ by oracle ORegsig , Sig ← ORegsig , computes σvki

by using Msk,
and outputs σi = (m∗i , m, ci, sigi), where ci = (fi, vki, σvki

) and sigi = Sig −
∑n

j=1,j 6=i∗ sigj. If there is no tuple (fi, i) in the dictionary, BMS sets it to CHA. Then
Numkeys = Numkeys + 1.

If BMS does not abort, AMS finally outputs a signature Sig on m; BMS outputs (m.Sig)
as the forged signature in this unforgeability game for the ECDSA signature scheme.

It can indicate that, if AMS breaks the multi-party functional signatures scheme with
non-negligible probability, then BMS can break ECDSA scheme with non-negligible proba-
bility. In this unforgeability game, AMS has two different types of forgery.

For Type I forgery, this game can know that this forgery has a signature on the new
message fi|vki that was never signed under the master public key Mvk by the oracle. In
Type I forgery, this game assumes that the probability of breaking the multi-party functional
signatures scheme is Pr[I], and it is obvious that the probability of BMS breaking the ECDSA
scheme is greater than or equal to 1

2 Pr[I].
For Type II forgery, when AMS generates a Type II forgery, the corresponding fi|vki

should have been signed under the master public Mvk during the queries of AMS to the
oracles Ok and Osig. It shows that the tuple (fi, vki) cannot be queried by AMS to Ok
because the signature generated under the signing key is not a valid forgery in the multi-
party functional signatures scheme if it is subsequently the signing key for the response.
Therefore, the oracle Osig already has been issued the tuple (fi, i, m). It can note that if
AMS does abort, it must be that he embedded his challenge in a query i∗ with the form
Osig(f , i, m). In Type II forgery, it assumes that the probability of breaking the multi-party
functional signatures scheme is Pr[II], and the probability of BMS breaking the ECDSA
scheme is greater than or equal to 1

2Q(λ)Pr[II].
Thus, if AMS can generate a forgery in the multi-party functional signatures scheme

with non-negligible probability Pr[I] + Pr[II], then BMS can break the ECDSA scheme
with non-unforgeability probability 1

2Q(λ) (Pr[II] + Pr[II]). However, the ECDSA scheme is
existentially unforgeable under chosen message attacks, and the probability of the BMS
successfully breaking the ECDSA scheme is negligible. It can show that AMS generates a
forgery in the multi-party functional signatures scheme with negligible probability.

Theorem 2. The multi-party functional signatures in this paper have collision resistance.

Proof of Theorem 2. In the multi-party functional signatures scheme, it needs to be as-
sumed that the full node is secure. The master private key of the scheme is d = ∑n+1

i=1 di;
therefore, even if n − 1 nodes are corrupted, the adversary cannot recover d by corrupted
nodes. Furthermore, the nodes have Xi = divi + ∑n

j=1,j 6=i Xij, even if n-1 corrupted nodes

Cryptography 2023, 7, 21 13 of 18

provide Xi, the adversary cannot compute Xi∗ that the honest node has, so it cannot get
sigi∗ . The above illustrates this scheme resists n-1 corrupted nodes collusion attacks.

6. Results

This section analyzes the computation complexity and implements the proposed
system model on a personal computer.

6.1. Complexity Analysis

As shown in Table 2, this paper gives a theoretical analysis of the proposed scheme.
Some notations of time complexity analysis are given as follows.

Table 2. Theoretical cost analysis.

Mining Node Full Node

Time costs TAi = Th + TGmul + 3TZmul +
(n + 1)TZadd + Tsc + nTdh

TS = nTh + 2TGmul + (n2 +

2n− 1)TZmul +
n2+3n

2 TZadd +
(n + 1)Tinv + nTdh

• Th: Time costs to run one hash function;
• TGmul : Time costs of running one multiplication operation in additive group G;
• TZmul : Time costs of running one multiplication operation in field Z∗q ;
• TZadd: Time costs of running one addition operation in field Z∗q ;
• Tf : Time costs of running one f (m);
• Tcom: Time costs for full node to communicate with nodes;
• Tinv: Time costs of running one extended Euclidean algorithm;
• Tsc: Time costs of running one smart contract;
• Tdh: Time costs of running one Diffie–Hellman key exchange.

In the proposed scheme, each mining node must perform one hash function, three
multiplications in the field Z∗q , n + 1 additions in the field Z∗q , one multiplication in G, one
f (m), and n Diffie–Hellman key exchanges. Each mining node needs to invoke one smart
contract to use function f . Excluding communication time, each mining node will cost

TAi = Th + TGmul + 3TZmul + (n + 1)TZadd + Tsc + nTdh. (6)

For the full node, it needs to run some random number generation algorithm and
ordinary addition and multiplication operations several times (the time cost of these steps
is negligible). In addition, it runs the n hash function, two multiplications in G, n(n− 1) +
2n + (n− 1) multiplications in the field Z∗q , n(n− 1)/2 + n + (n− 1) + 1 additions in field
Z∗q , n + 1 extended Euclidean algorithms, and n Diffie–Hellman key exchanges. Therefore,
the full node requires

TS = nTh + 2TGmul + (n2 + 2n− 1)TZmul

+
n2 + 3n

2
TZadd + (n + 1)Tinv + nTdh.

(7)

For communication between the full node and mining node, it requires (n2 + 2n)Tcom.
The scheme presented in this paper implements fine-grained authentication for certain

transactions, which is highly significant. Additionally, for multi-party signature schemes, it
is essential that they satisfy resistance to collusion attacks and can be proven secure. As is
shown in Table 3, the proposed scheme has certain advantages compared to the previous
scheme. The proposed scheme ensures that every part of the transaction is validated,
reflecting the fine-grained nature of the scheme. Furthermore, the scheme is adapted to run
on multiple nodes of the blockchain, and it is provably secure. For the collusion attack, the
proposed scheme can effectively resist such attacks. Even if n− 1 nodes are corrupted, the

Cryptography 2023, 7, 21 14 of 18

adversary cannot forge the signature generated by this scheme. The significant advantage of
this paper’s scheme over previous schemes is that it can achieve fine-grained authentication
of different parts of the transaction and resist collusion attacks.

Table 3. Properties and disadvantages of the schemes.

Scheme Blockchain Provable
Security

Against
Collusion Attack Fine-Grained

[24] no yes no no
[33] yes uncertain no no
[38] yes yes no no
[39] yes yes yes no
[40] yes yes yes no
our yes yes yes yes

6.2. Implement

This paper used a personal computer (RedmiBook with AMD CPU Ryzen 5 5600H with
Radeon Graphics @ 3.30 GHz with 16.0 GB RAM and Windows 10 Home OS) implementing
the proposed scheme in Python 3.9.6. This paper implements the scheme with different
numbers of nodes.

This paper chose the secp256k1 curve that is used in Bitcoin for the simulation exper-
iment. This paper implemented the experiments with different numbers of nodes. Each
execution was run 1000 times, and this paper computed the average as the final result. The
results of the experiment are shown in Figure 4. It can see that the running time of the
scheme slows down as the number of nodes increases: about 343 ms for three nodes, about
552 ms for six nodes, and about 791 ms for nine nodes. Regarding time consumption, the
scheme in this paper can be applied to the private blockchain.

Figure 4. Running times for different numbers of nodes.

This paper deployed smart contracts using Solidity language and Ropsten to test the
network. The compiler of Solidity language is Remix IDE, and its version is 0.7.4.We. This
paper used MetaMask to manage private blockchain accounts. In the experiment, the
gasPrice was set to 1.49 Gwei, where 1 Gwei = 109 wei = 10−9 ether. This paper defines
| f unctionSet| as the length of set functionSet. As shown in Tables 4 and 5 and Figure 5,
some costs of smart contracts were tested through this experiment.

Cryptography 2023, 7, 21 15 of 18

Table 4. Cost of deploying smart contract (gasprice = 1.49 Gwei and 1 ether= $1026).

Length of FunctionSet Gas Used USD ($)

5 948,328 0.973
10 1,115,115 1.144
15 1,281,915 1.315
20 1,448,660 1.486

Table 5. Cost of smart contract under different lengths of functionSet (gasprice = 1.49 Gwei and
1 ether = $1026).

Length of FunctionSet Function Gas Used USD ($)

5
invokeF 64,445 0.066
addUser 94,981 0.097

deleteUser 55,675 0.057

10
invokeF 83,965 0.086
addUser 114,502 0.117

deleteUser 75,195 0.077

15
invokeF 103,486 0.106
addUser 134,023 0.138

deleteUser 94,716 0.097

20
invokeF 123,007 0.126
addUser 153,543 0.158

deleteUser 114,237 0.117

Figure 5. Smartcontract costs under different lengths of functionSet.

Costs of smart contract deployment and algorithms increase as the functionSet length
increases. In this experiment, the cost of deploying smart contract for | f unctionSet| = 5 is
$0.973. When the length of functionSet is 10, 15, and 20, the cost of deploying smart contract
is $1.144, $1.315, and $1.486. As shown in Table 5 and Figure 5, when | f unctionSet| = 5,
gasPrice of invokeF, addUser, and deleteUser is 64,445 Gwei, 94,981 Gwei and 55,675 Gwei,
respectively. Obviously, with the increase of the | f unctionSet|, the gasPrice required to
invoke the smart contract also increases. GasPrice of addUser is always more than invokeF
and deleteUser. All gasPrice consumption is reasonable, which indicates that binding
function f of the function signature to a private smart contract is valid.

Cryptography 2023, 7, 21 16 of 18

6.3. The Limitations of the Study

This paper is preconfigured to use the function signature of function f in the smart
contract, which may limit the operability of this scheme. Additionally, this paper is directly
combined with ECDSA signatures and does not apply to other elliptic curve signatures.

7. Conclusions

Although some researchers have proposed various multi-party signatures to tackle the
issue of verifying private blockchain transactions by multiple parties, the previous construct
still needs to address authenticating different parts of a transaction. This paper presents a
novel approach that combines multi-party ECDSA signatures with functional signatures to
enable fine-grained authentication of different parts of the entire transaction. In addition,
the function f of the functional signature is safeguarded and implemented using a smart
contract on a private blockchain. The research presented in this paper is motivated by the
fact that previous multi-party signature schemes designed for blockchains cannot authenti-
cate the entire transaction at a fine-grained level. Furthermore, when the final signature
fails to pass the authentication, the whole transaction will be rejected, which greatly wastes
time for the partly correct transaction to pass the authentication. Experimental results show
that the proposed scheme is feasible to be applied to the blockchain.

Exploring how to design an efficient and multi-party signature with an automatic
fine-grained division of blockchain transactions is an important research direction for the
future. The multi-party functional signatures proposed in this paper will also find different
applications outside of the private blockchain.

Author Contributions: Conceptualization, Y.Z. and Q.Z.; methodology, Y.Z.; software, Y.Z, K.W.
and M.C.; validation, Y.Z., Q.Z. and Z.Z.; formal analysis, Y.Z.; investigation, Y.Z.; resources, Y.Z.;
data curation, Y.Z.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z. and
Q.Z.; visualization, Y.Z.; supervision, Q.Z.; project administration, Q.Z.; funding acquisition, Q.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The National Key R&D Program of China (grant number
2021YFA1000600) and National Natural Science Foundation of China (grant number 12171114).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fanning, K.; Centers, D.P. Blockchain and its coming impact on financial services. J. Corp. Account. Financ. 2016, 27, 53–57.

[CrossRef]
2. Nguyen, Q.K. Blockchain-a financial technology for future sustainable development. In Proceedings of the 2016 3rd International

Conference on Green Technology and Sustainable Development (GTSD), Kaohsiung, Taiwan, 24–25 November 2016; pp. 51–54.
3. Treleaven, P.; Brown, R.G.; Yang, D. Blockchain technology in finance. Computer 2017, 50, 14–17. [CrossRef]
4. Saxena, S.; Bhushan, B.; Ahad, M.A. Blockchain based solutions to secure IoT: Background, integration trends and a way forward.

J. Netw. Comput. Appl. 2021, 181, 103050. [CrossRef]
5. Shaukat, K.; Alam, T.M.; Hameed, I.A.; Khan, W.A.; Abbas, N.; Luo, S. A review on security challenges in internet of things

(IoT). In Proceedings of the 2021 26th International Conference on Automation and Computing (ICAC), Portsmouth, UK, 2–4
September 2021; pp. 1–6.

6. Benisi, N.Z.; Aminian, M.; Javadi, B. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Appl. 2020,
162, 102656. [CrossRef]

7. Nasir, A.; Shaukat, K.; Khan, K.I.; Hameed, I.A.; Alam, T.M.; Luo, S. What is core and what future holds for blockchain
technologies and cryptocurrencies: A bibliometric analysis. IEEE Access 2020, 9, 989–1004. [CrossRef]

8. Nakamoto, S.; Bitcoin, A. A peer-to-peer electronic cash system. Bitcoin 2008, 4. Available online: https://bitcoin.org/bitcoin.pdf
(accessed on 11 March 2023).

9. Wood, G. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Proj. Yellow Pap. 2014, 151, 1–32.

http://doi.org/10.1002/jcaf.22179
http://dx.doi.org/10.1109/MC.2017.3571047
http://dx.doi.org/10.1016/j.jnca.2021.103050
http://dx.doi.org/10.1016/j.jnca.2020.102656
http://dx.doi.org/10.1109/ACCESS.2020.3046931
https://bitcoin.org/bitcoin. pdf

Cryptography 2023, 7, 21 17 of 18

10. Shaukat, K.; Alam, T.M.; Luo, S.; Shabbir, S.; Hameed, I.A.; Li, J.; Abbas, S.K.; Javed, U. A review of time-series anomaly detection
techniques: A step to future perspectives. In Advances in Information and Communication: Proceedings of the 2021 Future of Information
and Communication Conference (FICC); Springer International Publishing: Vancouver, BC, Canada, 2021.

11. Javed, U.; Shaukat, K.; Hameed, I.A.; Iqbal, F.; Alam, T.M.; Luo, S. A review of content-based and context-based recommendation
systems. Int. J. Emerg. Technol. Learn. 2021, 16, 274–306. [CrossRef]

12. Shaukat, K.; Luo, S.; Varadharajan, V. A novel deep learning-based approach for malware detection. Eng. Appl. Artif. Intell. 2023,
122, 106030. [CrossRef]

13. Perez, A.T.E.; Rossit, D.A.; Tohme, F.; Vasquez, O.C. Mass customized/personalized manufacturing in Industry 4.0 and blockchain:
Research challenges, main problems, and the design of an information architecture. Inf. Fusion 2022, 79, 44–57. [CrossRef]

14. Kushwaha, S.S.; Joshi, S.; Singh, D.; Kaur, M.; Lee, H.N. Systematic review of security vulnerabilities in ethereum blockchain
smart contract. IEEE Access 2022, 10, 6605–6621. [CrossRef]

15. Shaukat, K.; Luo, S.; Varadharajan, V. A novel method for improving the robustness of deep learning-based malware detectors
against adversarial attacks. Eng. Appl. Artif. Intell. 2022, 116, 105461. [CrossRef]

16. Boyle, E.; Goldwasser, S.; Ivan, I. Functional signatures and pseudorandom functions. In Proceedings of the Public-Key
Cryptography–PKC 2014: 17th International Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires,
Argentina, 26–28 March 2014; Proceedings 17, pp. 501–519.

17. Backes, M.; Meiser, S.; Schröder, D. Delegatable functional signatures. In Proceedings of the Public-Key Cryptography–PKC
2016: 19th IACR International Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, 6–9 March 2016;
Proceedings, Part I, pp. 357–386.

18. Okamoto, T.; Takashima, K. Decentralized Attribute-Based Signatures. In Proceedings of the Public Key Cryptography, Nara,
Japan, 26 Feburary–1 March 2013; pp. 125–142.

19. Lu, H.; Jin, C.; Helu, X.; Zhu, C.; Guizani, N.; Tian, Z. AutoD: Intelligent blockchain application unpacking based on JNI layer
deception call. IEEE Netw. 2020, 35, 215–221. [CrossRef]

20. MacKenzie, P.; Reiter, M.K. Two-party generation of DSA signatures. In Proceedings of the Advances in Cryptology–CRYPTO
2001: 21st Annual International Cryptology Conference, Santa Barbara, CA, USA, 19–23 August 2001; Proceedings 21, pp. 137–154.

21. Lindell, Y. Fast secure two-party ECDSA signing. In Proceedings of the Advances in Cryptology–CRYPTO 2017: 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 20–24 August 2017; Proceedings, Part II 37, pp. 613–644.

22. Castagnos, G.; Catalano, D.; Laguillaumie, F.; Savasta, F.; Tucker, I. Two-party ECDSA from hash proof systems and efficient
instantiations. In Proceedings of the Advances in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, 18–22 August 2019; Proceedings, Part III 39, pp. 191–221.

23. Lindell, Y.; Nof, A. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency
custody. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada,
15–19 October 2018; pp. 1837–1854.

24. Doerner, J.; Kondi, Y.; Lee, E.; Shelat, A. Threshold ECDSA from ECDSA assumptions: The multiparty case. In Proceedings of the
2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 1051–1066.

25. Gennaro, R.; Goldfeder, S. Fast multiparty threshold ECDSA with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018; pp. 1179–1194.

26. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Chen, S.; Liu, D.; Li, J. Performance comparison and current challenges of
using machine learning techniques in cybersecurity. Energies 2020, 13, 2509. [CrossRef]

27. Shaukat, K.; Luo, S.; Varadharajan, V.; Hameed, I.A.; Xu, M. A survey on machine learning techniques for cyber security in the
last decade. IEEE Access 2020, 8, 222310–222354. [CrossRef]

28. Halpin, H.; Piekarska, M. Introduction to Security and Privacy on the Blockchain. In Proceedings of the 2017 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW), Paris, France, 26–28 April 2017; pp. 1–3.

29. Li, X.; Xu, J.; Fan, X.; Wang, Y.; Zhang, Z. Puncturable signatures and applications in proof-of-stake blockchain protocols. IEEE
Trans. Inf. Forensics Secur. 2020, 15, 3872–3885. [CrossRef]

30. Zhu, Y.; Guo, R.; Gan, G.; Tsai, W.T. Interactive incontestable signature for transactions confirmation in bitcoin blockchain. In
Proceedings of the 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), Atlanta, GA, USA,
10–14 June 2016; Volume 1, pp. 443–448.

31. Mercer, R. Privacy on the blockchain: Unique ring signatures. arXiv 2016, arXiv:1612.01188.
32. Gong, B.; Cui, C.; Hu, M.; Guo, C.; Li, X.; Ren, Y. Anonymous traceability protocol based on group signature for blockchain.

Future Gener. Comput. Syst. 2022, 127, 160–167. [CrossRef]
33. Kokoris Kogias, E.; Jovanovic, P.; Gailly, N.; Khoffi, I.; Gasser, L.; Ford, B. Enhancing Bitcoin Security and Performance with Strong

Consistency via Collective Signing; USENIX Association: Berkeley, CA, USA, 2016.
34. Zhou, X.; Wu, Q.; Qin, B.; Huang, X.; Liu, J. Distributed bitcoin account management. In Proceedings of the 2016 IEEE

Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 105–112.
35. Alangot, B.; Suresh, M.; Raj, A.S.; Pathinarupothi, R.K.; Achuthan, K. Reliable collective cosigning to scale blockchain with strong

consistency. In Proceedings of the Network and Distributed System Security Symposium (DISS’18), San Diego, CA, USA, 18–21
February 2018; pp. 1932–4537.

http://dx.doi.org/10.3991/ijet.v16i03.18851
http://dx.doi.org/10.1016/j.engappai.2023.106030
http://dx.doi.org/10.1016/j.inffus.2021.09.021
http://dx.doi.org/10.1109/ACCESS.2021.3140091
http://dx.doi.org/10.1016/j.engappai.2022.105461
http://dx.doi.org/10.1109/MNET.011.2000467
http://dx.doi.org/10.3390/en13102509
http://dx.doi.org/10.1109/ACCESS.2020.3041951
http://dx.doi.org/10.1109/TIFS.2020.3001738
http://dx.doi.org/10.1016/j.future.2021.09.020

Cryptography 2023, 7, 21 18 of 18

36. Yu, M.; Zhang, J.; Wang, J.; Gao, J.; Xu, T.; Deng, R.; Zhang, Y.; Yu, R. Internet of Things security and privacy-preserving
method through nodes differentiation, concrete cluster centers, multi-signature, and blockchain. Int. J. Distrib. Sens. Netw. 2018,
14, 1550147718815842. [CrossRef]

37. Maxwell, G.; Poelstra, A.; Seurin, Y.; Wuille, P. Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Cryptogr.
2019, 87, 2139–2164. [CrossRef]

38. Yu, H.; Wang, H. Elliptic curve threshold signature scheme for blockchain. J. Inf. Secur. Appl. 2022, 70, 103345. [CrossRef]
39. Xiao, Y.; Zhang, P.; Liu, Y. Secure and efficient multi-signature schemes for fabric: An enterprise blockchain platform. IEEE Trans.

Inf. Forensics Secur. 2020, 16, 1782–1794. [CrossRef]
40. Uganya, G.; Baskar, R. Modified Elliptic Curve Cryptography Multi-Signature Scheme to Enhance Security in Cryptocurrency.

Comput. Syst. Sci. Eng. 2023, 45, 641–658. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/1550147718815842
http://dx.doi.org/10.1007/s10623-019-00608-x
http://dx.doi.org/10.1016/j.jisa.2022.103345
http://dx.doi.org/10.1109/TIFS.2020.3042070
http://dx.doi.org/10.32604/csse.2023.028341

	Introduction
	Related Work
	Preliminaries
	ECDSA Signature
	Functional Signatures
	Security Definition
	Smart Contract

	Proposed System Model and Multi-Party Functional Signatures Method
	System Model Framework
	Smart Contract Settings and Proposed Concrete Scheme
	Smart Contract Design
	Concrete Multi-Party Functional Signatures Scheme

	Security Analysis
	Results
	Complexity Analysis
	Implement
	The Limitations of the Study

	Conclusions
	References

