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Abstract: Based on hybrid wavelength pumping and tapered Yb-doped fibers (T-YDFs), a 650 W
all-fiber single-frequency polarization-maintaining fiber amplifier was demonstrated experimentally
at 1030 nm. Different pump power ratios in the T-YDF-based power-amplifier stage were proposed to
investigate their influence on the transverse mode instability (TMI) effect. The highest TMI threshold
was obtained when the pump power ratio of 940 nm to 976 nm was 1:4.4. A measured M2 factor of 1.7
and a polarization extinction ratio of 14 dB at the maximum output power were obtained. To the best
of our knowledge, these results exhibit the highest output power of any all-fiber single-frequency
polarization-maintaining fiber amplifiers created up to now.

Keywords: single frequency; high power; tapered Yb-doped fiber; hybrid wavelength pumping

1. Introduction

Research and development into high-power single-frequency fiber lasers (SFFLs) has
continued up to the present day. Due to their compact structure [1], narrow linewidth [2],
and high beam quality [3,4], they are widely used in nonlinear frequency conversion [5],
coherent beam combining [6], and gravitational wave detection (GWD) [7]. Especially in
the field of GWD, they show a higher output power and higher detection sensitivity in their
measuring systems [7]. With the promotion of the master oscillator power amplifier (MOPA)
structure, fiber amplifiers have become an active component in improvements in the output
power of SFFLs. However, the main limitation of further power scaling for single-frequency
fiber amplifiers (SFFAs) is the onset of detrimental effects in the optical fibers, such as
stimulated Brillouin scattering (SBS) and transverse mode instability (TMI) [8,9]. For SBS
suppression, the most common method to combat this is to employ an active fiber with
a large mode area (LMA) or high pump absorption [10]. Besides this, some suppression
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methods for broadening the Brillouin gain spectrum have also been proposed, such as
applying strain or a temperature gradient [11,12].

To date, SFFAs with an output power of hundreds of watts have been demonstrated
successfully. In 2013, Zhang et al. achieved an output power of 170 W using a 10/125 µm
core/inner-cladding diameter polarization-maintaining (PM) Yb-doped fiber with an ap-
plied strain gradient method [13]. In 2014, Huang et al. achieved a 414 W single-frequency
PM laser output using a 25/250 µm core/inner-cladding diameter PM Yb-doped LMA
fiber, applying a step-distributed longitudinal strain gradient [14]. In the same year, Robin
et al. achieved the highest output power record yet of 811 W in an SFFA via a bulk optic
configuration based on a Yb-doped PM photonic crystal fiber and a thermal gradient tech-
nique [15]. Evidently, power amplification for all-fiber SFFAs is still restricted by the onset
of SBS with relatively small core diameters of ≤25 µm, while applying active fibers with
larger mode field areas will easily introduce the TMI effect as a new challenge [16].

To balance these two limiting factors and to achieve a higher power diffraction-limited
output, tapered Yb-doped fibers (T-YDFs) have become the first choice due to their inherent
superior characteristics: their relatively simple structure and their good compatibility with
other optical components [17,18]. For these fibers, their mode field area increases along the
tapered region, leading to the gradual strengthening of SBS suppression. Moreover, the
depressed-cladding design of T-YDFs enhances high-order mode (HOM) filtering, which
contributes to the maintenance of a high-quality beam output. In 2020, Lai et al. achieved
an output power of 550 W at 1030 nm by employing a T-YDF, which is at present the highest
output power of any all-fiber single-frequency amplifier, with an M2 factor of 1.47 [19].
Higher output powers are limited by the occurrence of the TMI effect; particularly for
high-power fiber amplifiers, photodarkening and quantum defects will bring heat loads to
the active fiber, which accelerates the occurrence of TMI—leading to beam quality degrada-
tion [20,21]. Consequently, numerous techniques have been proposed to suppress the TMI
effect, such as hybrid wavelength pumping methods, adopting a smaller winding radius
for active fibers to filter out HOMs, pumping structure optimization [21,22], and so on.

Thanks to a large emission cross-section and the low level of quantum defects in
Yb-doped fibers at 1030 nm [23], fiber laser working in this wavelength has the potential
to excite a higher output power in a fiber laser system. In this paper, a 650 W all-fiber
single-frequency PM fiber amplifier is demonstrated experimentally at 1030 nm. With
the combination of a T-YDF and a hybrid-pumping scheme, the SBS was suppressed
and the TMI threshold was enhanced successfully. Moreover, the measured M2 factor
and the polarization extinction ratio (PER) were 1.7 and 14 dB at the maximum output
power, respectively.

2. Experimental Setup

The experimental setup of the all-fiber single-frequency PM fiber amplifier is shown
in Figure 1. A MOPA structure was applied, containing a 1030 nm linearly polarized
single-frequency seed laser, two pre-amplifiers, and a power-amplifier. The seed laser had
an output power of 15 mW and a laser linewidth of 13 kHz. More details on the single-
frequency seed laser can be found in our previous works [24,25]. The signal from the seed
laser was first boosted to 9 W through two pre-amplifiers (both of them shared a similar
amplification configuration). In the two pre-amplifier stages, two pieces of active fiber
(2.5 m-long PM-YDF-10/125 and 3.5 m-long PM-YDF-12/125) were forward pumped by
976 nm multi-mode laser diodes (MM-LDs) via (2 + 1) × 1 PM combiners. Two customized
integrated optical components (PM-ISO-BPF) acted as PM isolators, and band-pass filters
were used. An 1/99 2 × 2 PM coupler was employed to monitor the backward propagating
lights via its 1% port for the evaluation of SBS.
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Figure 1. Experimental setup of the all-fiber single-frequency PM fiber amplifier. (PM: polarization-
maintaining, LD: laser diode, YDF: Yb-doped fiber, BPF: band-pass filter, ISO: isolator, T-YDF: tapered
Yb-doped fiber, DM: dichroic mirror).

In the power-amplifier stage, six 130 W 976 nm MM-LDs and two 150 W 940 nm
MM-LDs are optional for providing pump power via a (6 + 1) × 1 PM combiner. For this
combiner, the core/inner-cladding diameter of the input and output port were 10/125 µm
and 25/250 µm, respectively. A 2.5 m-long T-YDF with an input and output port of
35/250 µm and 56/400 µm was used. Different from the concave profile along such
fibers [17,18], the tapered region—with a length of 0.7 m—was located at the middle part
of the fiber, with a linearly longitudinal profile. The cladding absorption of the T-YDF was
10 dB/m at 976 nm, and the core numerical aperture was 0.07. The T-YDF were coiled
in a racetrack shape with a minimum diameter of ~8 cm and placed on a water-cooled
aluminum plate with a cooling temperature of 20 ◦C. A 0.3 m-long non-PM passive fiber
with a core/inner-diameter of 50/400 µm was spliced behind the output port of the T-YDF.
The signal laser was delivered from the passive fiber with an angle 8◦ to prevent any optical
reflections. A dichroic mirror was used to filter the residual pump power.

3. Results and Discussion

Due to the special structure and relatively large core-diameter of T-YDFs, a high SBS
threshold can be maintained in the fiber laser system. Therefore, in the process of realizing
a sub-kW level SFFA, TMI suppression became our main research goal. For Yb-doped
fibers, the typical absorption peak wavelengths are located at 915 nm, 940 nm, and 976 nm.
Although the cladding absorption of T-YDFs at 915 nm is about the same as at 940 nm,
a high-power SFFA pumped by the latter wavelength has a lower quantum loss, which
helps to mitigate the thermal effect. Thus, LDs with a central wavelength of 940 nm were
adopted in the experiments. To explore the influence on the TMI of hybrid wavelength
pumping, three schemes with different pumping power ratios were employed and the TMI
threshold was measured separately.

3.1. Single Wavelength Pumping of 976 nm LDs

In this pumping scheme, six 976 nm LDs were employed for single-wavelength
pumping. The output power and backward propagating power of the SFFA versus the
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pump power are shown in Figure 2a. It can be seen that the output power increased linearly
without any power roll-over. As the pump power increased to 718 W, the maximum output
power of 603 W was obtained, with a corresponding slope efficiency of 84%. Thanks
to the longer gain fiber, the SFFA was able to achieve stronger pump absorption and
improve the slope efficiency. Meanwhile, the excess heat was evenly distributed throughout
the relatively long fiber, which effectively increased the TMI threshold and achieved a
higher power output compared with the results in Ref. [19]. Furthermore, owing to the
relatively large core diameter of the T-YDFs in the power-amplifier, nonlinear increments
in the backward propagating power were not observed—proving that the SBS effect did
not emerge.
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It is clear that the SFFA still worked under the SBS threshold, but the TMI effect caused
by the heat accumulation gradually strengthened with increases in the output power. The
time-domain signal was monitored by applying a high-speed photoelectric detector (PD)
whose response frequency was nearly 17 MHz displayed in the oscilloscope. The temporal
intensity during a period of 25 ms and the corresponding frequency-domain signal within
the frequency of 0–−20 kHz by fast Fourier transform at the output power at 580 W and
603 W are illustrated in Figure 2b, Figure 2c, and their inset, respectively. The figure shows
that the temporal intensity fluctuates were kept stable, and the characteristic peaks of
kHz in the frequency-domain signal were not observed when the output power increased
to 580 W. However, when the output power reached 603 W, an unexpected fluctuation
appeared and corresponding discrete frequency peaks were observed within 0–−5 kHz in
the Fourier spectrum. All the results show that the TMI effect onset at a power scaling of
603 W.

3.2. Hybrid Pumping with a Power Ratio of 1:4.4

In the second scheme, a 940 nm LD and five 976 nm LDs were used in the hybrid
pumping method. The output power of the hybrid pumping versus the pump power are
depicted in Figure 3a. With the 940 nm LD module fully turned on (a pump power of 147 W),
the output power increased linearly to 92 W, with a slope efficiency of 59%. Furthermore,
the maximum output power of 650 W was achieved at a total pump power of 797 W, and
the slope efficiency was slightly improved to 86% by 976 nm LD pumping. According to
Ref. [26], the slope efficiency can be improved by hybrid pumping, which corresponds with
the outcome of this study. Meanwhile, Figure 3b and its inset show the growth trend of the
backward propagating power and backward spectra within 1029–1031 nm using an optical
spectrum analyzer (OSA) with a resolution of 0.02 nm, indicating that the SBS effect did
not occur.
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Figure 3. (a) Output power versus pump power. (b) Backward propagating power versus output
power. Inset: Backward spectra within the wavelength range of 1029–1031 nm.

Usually, the lower pump absorption of high-power fiber amplifiers (under 940 nm
LDs pumping) can enhance gain saturation and improve the TMI threshold [27]. To
verify the effects of hybrid pumping on the TMI effect, the time-domain signal and its
Fourier transform spectra were recorded in the process of power amplification, as shown
in Figure 4a,b and its inset. The temporal intensity remained subtly fluctuating and the
corresponding frequency-domain spectrum was also stable until the output power reached
628 W. However, with the power increasing to 650 W, dramatic instability appeared in
the temporal trace, and corresponding frequency spectral peaks within the frequency
of 0–−5 kHz could be observed easily. For comparison, the temporal intensity and the
magnitude of the characteristic kHz peaks were stronger than the situation in the first
system. As the output power was higher, the mode coupling effect was stronger in this
SFFA. Once the output power breaks through the TMI threshold, its characteristic signal
will be more obvious than at a low power output [20,21]. Therefore, the results show that
the TMI threshold was increased by nearly 50 W in this laser system.
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3.3. Hybrid Pumping with a Power Ratio of 1:1.7

Owing to the excellent functioning of the hybrid pumping in the previous scheme,
the pump power ratio (adding a number of 940 nm LDs) was increased in this experiment.
Two 940 nm LDs and four 976 nm LDs were adopted in the second hybrid pumping
method. The output power and backward propagating power versus the pump power are
demonstrated in Figure 5a. It is easy to find that as the 940 nm pump power reached 277 W,
the output power increased to 167 W, with a corresponding slope efficiency of 59%. Then,
the maximum output power of 560 W was obtained, with a slope efficiency of 82% under
a 976 nm pump power of 482 W. Compared with the former systems, the slope efficiency
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was not improved by hybrid pumping, and was even slightly reduced. Meanwhile, there
was no sign of nonlinear growth in the backward propagating power during the power
amplification, which proves that SBS did not occur in this system.
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Obviously, in the third system, the low optical–optical conversion efficiency of the
940 nm LD pumping contributed to excessive heat accumulation in the T-YDF, which
may be a possible reason for the reduction in slope efficiency pumped by the 976 nm LDs.
Meanwhile, too much heat will inevitably lead to a threshold reduction in the TMI. To
further determine the TMI threshold of the new system, the temporal intensity of the output
laser and the corresponding frequency-domain signal at 560 W was measured, as shown in
Figure 5b and its inset. Severe fluctuations showed up in the time-domain signal and some
characteristic peaks within 0–5 kHz were observed in the corresponding Fourier spectrum.
It is not hard to ascertain that the TMI effect onset at 560 W, and all the results prove that
the TMI threshold was reduced by 90 W compared with the second scheme.

3.4. Analysis and Comparison

The M2 factor and PER under single wavelength pumping and the hybrid pumping
(a pump power ratio of 940 nm to 976 nm is 1:1.7) are shown in Figure 6a,b and its inset,
respectively. The red points in Figure 6 represent the power beyond the TMI threshold. It
could be found that when the power exceeded the threshold of the TMI and increased to
593 W and 638 W in these two schemes, beam profile distortion could be observed and the
M2 factor increased to be 2.2 and 1.9, respectively. Meanwhile, the PER of the signal light
could still be kept stable above 14 dB at the maximum power output.
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By comparing the latter two hybrid wavelength pumping schemes, it could be found
that balancing the gain saturation and thermal effect became the goal for optimizing the
ratio of the two different pump powers. There is an optimal power ratio in the hybrid
wavelength pumping scheme. Finally, in this system, the highest TMI threshold was
reached at 650 W, when the pump power ratio of 940 nm to 976 nm was 1:4.4. Besides
this, the M2 factor and their corresponding beam profiles at different output powers are
shown in Figure 7a. Obvious beam quality degradation was found when the output power
increased from 320 W to 650 W and the M2 factor was degraded from 1.28 to 1.7. This
beam quality degradation could be attributed to the coupling process of the fundamental
mode and high-order mode at high-power outputs. The PER was measured at different
output powers, as displayed in Figure 7b. It can be seen that the PER of the output laser
could be maintained at 14 dB, showing that the polarization degree was stable at all power
scales—even though TMI had occurred. In the inset graphic, the output optical spectrum
at 650 W was measured by an OSA with a resolution of 0.02 nm. The central wavelength
was located at 1030 nm and the optical signal-to-noise ratio was close to 50 dB. A further
study on TMI suppression based on T-YDFs will be considered as the key goal of our
subsequent work.

Photonics 2022, 9, x FOR PEER REVIEW 7 of 9 
 

 

Figure 6. Measured beam quality and beam profile at different output powers. Inset: measured PER 

at different output power. (a) SFFA under single wavelength pumping. (b) SFFA under the hybrid 

pumping with a power ratio of 1:1.7. 

By comparing the latter two hybrid wavelength pumping schemes, it could be found 

that balancing the gain saturation and thermal effect became the goal for optimizing the 

ratio of the two different pump powers. There is an optimal power ratio in the hybrid 

wavelength pumping scheme. Finally, in this system, the highest TMI threshold was 

reached at 650 W, when the pump power ratio of 940 nm to 976 nm was 1:4.4. Besides this, 

the M2 factor and their corresponding beam profiles at different output powers are shown 

in Figure 7a. Obvious beam quality degradation was found when the output power in-

creased from 320 W to 650 W and the M2 factor was degraded from 1.28 to 1.7. This beam 

quality degradation could be attributed to the coupling process of the fundamental mode 

and high-order mode at high-power outputs. The PER was measured at different output 

powers, as displayed in Figure 7b. It can be seen that the PER of the output laser could be 

maintained at 14 dB, showing that the polarization degree was stable at all power scales—

even though TMI had occurred. In the inset graphic, the output optical spectrum at 650 W 

was measured by an OSA with a resolution of 0.02 nm. The central wavelength was lo-

cated at 1030 nm and the optical signal-to-noise ratio was close to 50 dB. A further study 

on TMI suppression based on T-YDFs will be considered as the key goal of our subsequent 

work. 

 

Figure 7. SFFA under hybrid pumping with a power ratio of 1:4.4. (a) Measured beam quality and 

beam profiles at different output powers. Inset: beam quality measurement results at 650 W. (b) 

Measured PER at different output powers. Inset: output optical spectrum at the maximum power 

within the wavelength range of 900−1100 nm. 

Moreover, the linewidth of the output laser was measured by a delayed self-hetero-

dyne method, which could be recorded by applying a highspeed PD and displayed in the 

spectrum analyzer with a resolution bandwidth of 1 kHz. Figure 8a shows the measured 

linewidth results of the seed laser and the SFFA under hybrid pumping with a power ratio 

of 1:4.4. The typical heterodyne signal was fit to the Lorentzian profile for better estima-

tion of the spectral linewidth, which it was 264 kHz at −20 dB from the peak, indicating 

that the linewidth of the SFFA at 650 W was consistent with that of the seed laser—both 

of which were 13.2 kHz full-width at half maximum. Linewidth broadening was not ob-

served during the power amplification, which results from the lack of an evident ASE in 

the optical spectrum. In Figure 8b, the single-frequency output of the SFFA was shown 

using a scanning spectrum of a Fabry−Perot interferometer with a free spectral range of 

1.5 GHz, due to the outstanding performance of the seed laser. The absence of any peaks 

between the main resonance of the interferometer proved that the output laser operated 

stably with a single-frequency behavior, without mode hopping or mode competition 

phenomena. 

Figure 7. SFFA under hybrid pumping with a power ratio of 1:4.4. (a) Measured beam quality
and beam profiles at different output powers. Inset: beam quality measurement results at 650 W.
(b) Measured PER at different output powers. Inset: output optical spectrum at the maximum power
within the wavelength range of 900–1100 nm.

Moreover, the linewidth of the output laser was measured by a delayed self-heterodyne
method, which could be recorded by applying a highspeed PD and displayed in the
spectrum analyzer with a resolution bandwidth of 1 kHz. Figure 8a shows the measured
linewidth results of the seed laser and the SFFA under hybrid pumping with a power ratio
of 1:4.4. The typical heterodyne signal was fit to the Lorentzian profile for better estimation
of the spectral linewidth, which it was 264 kHz at −20 dB from the peak, indicating that
the linewidth of the SFFA at 650 W was consistent with that of the seed laser—both of
which were 13.2 kHz full-width at half maximum. Linewidth broadening was not observed
during the power amplification, which results from the lack of an evident ASE in the
optical spectrum. In Figure 8b, the single-frequency output of the SFFA was shown using a
scanning spectrum of a Fabry–Perot interferometer with a free spectral range of 1.5 GHz,
due to the outstanding performance of the seed laser. The absence of any peaks between
the main resonance of the interferometer proved that the output laser operated stably with
a single-frequency behavior, without mode hopping or mode competition phenomena.
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