Dual-Band Large-Frequency Ratio Power Divider Using Mode Composite Transmission Line for 5G Communication Systems
Abstract
:1. Introduction
2. Principle of Hybrid SSPPs and CSIW Structure
2.1. The Transition from SIW to CSIW
2.2. Dispersion Analysis of SSPPs
3. MC-TL Design
4. Simulation and Measurement of MC-TL
5. Dual-Band Power Divider Based on MC-TL
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Halak, B.; El-Hajjar, M.; Toma, O.H.; Cheng, Z. Energy-Efficient Hardware Implementation of an LR-Aided K-Best MIMO Decoder for 5G Networks. J. Low Power Electron. Appl. 2016, 6, 12. [Google Scholar] [CrossRef]
- Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broad-band systems. IEEE Commun. Mag. 2011, 49, 101–107. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Maheshwari, M.K.; Raza, M.; Masud, A.R. Design and Optimization of an Ultra-Low-Power Cross-Coupled LC VCO with a DFF Frequency Divider for 2.4 GHz RF Receivers Using 65 nm CMOS Technology. J. Low Power Electron. Appl. 2023, 13, 54. [Google Scholar] [CrossRef]
- Nguyen, X.V.L.; Gerges, T.; Bevilacqua, P.; Duchamp, J.-M.; Benech, P.; Verdier, J.; Lombard, P.; Linge, P.U.; Mieyeville, F.; Cabrera, M.; et al. Radio-Frequency Energy Harvesting Using Rapid 3D Plastronics Protoyping Approach: A Case Study. J. Low Power Electron. Appl. 2023, 13, 19. [Google Scholar] [CrossRef]
- Guo, J.; Djerafi, T.; Wu, K. Mode composite waveguide. IEEE Trans. Microw. Theory Tech. 2016, 64, 3187–3197. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J. Dual-band leaky-wave antenna based on dual-mode composite microstrip line for microwave and millimeter-wave applications. IEEE Trans. Antennas Propag. 2018, 66, 1660–1667. [Google Scholar] [CrossRef]
- Xiang, B.J.; Zheng, S.Y.; Wong, H.; Pan, Y.M.; Wang, K.X.; Xia, M.H. A Flexible Dual-Band Antenna with Large Frequency Ratio and Different Radiation Properties over the Two Bands. IEEE Trans. Antennas Propag. 2018, 66, 657–667. [Google Scholar] [CrossRef]
- Su, Y.; Lin, X.Q.; Yu, J.W.; Fan, Y. Mode composite coplanar waveguide. IEEE Access 2019, 7, 109278–109288. [Google Scholar] [CrossRef]
- Wu, K.; Deslandes, D.; Cassivi, Y. The substrate integrated circuits—A new concept for high-frequency electronics and optoelectronics. In Proceedings of the 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service (TELSIKS), Nis, Yugoslavia, 1–4 October 2003; Volume 1, pp. P-III–P-X. [Google Scholar]
- Heidari, H.R.; Rezaei, P.; Kiani, S.; Taherinezhad, M. A monopulse array antenna based on SIW with circular polarization for using in tracking systems. AEU-Int. J. Electron. Commun. 2023, 162, 154563. [Google Scholar] [CrossRef]
- Kumar, L.; Nath, V.; Reddy, B.V.R. A wideband substrate integrated waveguide (SIW) antenna using shorted vias for 5G communications. AEU-Int. J. Electron. Commun. 2023, 171, 154879. [Google Scholar] [CrossRef]
- Abdolhamidi, M.; Shahabadi, M. X-band substrate integrated waveguide amplifier. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 815–817. [Google Scholar] [CrossRef]
- Anand, S.; Theetharappan, R. Metamaterial and SIW inspired isolating fences for lateral de-coupling in MIMO antenna. AEU-Int. J. Electron. Commun. 2023, 166, 154667. [Google Scholar] [CrossRef]
- Pendry, J.B.; Martín-Moreno, L.; Garcia-Vidal, F.J. Mimicking surface plasmons with structured surfaces. Science 2004, 305, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cui, T.J.; Martin-Cano, D.F.; Garcia-Vidal, J. Conformal surface plasmons propagating on ultrathin and flexible films. Proc. Nat. Acad. Sci. USA 2013, 110, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Zhang, Q.; Chiu, C.-Y.; Chen, Y.; Murch, R.D. Single-side-scanning surface waveguide leaky-wave antenna using spoof surface plasmon excitation. IEEE Access 2018, 6, 66020–66029. [Google Scholar] [CrossRef]
- Kianinejad, A.; Chen, Z.N.; Qiu, C.-W. Design and modeling of spoof surface plasmon modes-based microwave slow-wave transmission line. IEEE Trans. Microw. Theory Tech. 2015, 63, 1817–1825. [Google Scholar] [CrossRef]
- Pan, B.C.; Cui, T.J. Broadband decoupling Network for Dual-Band Microstrip Patch Antennas. IEEE Trans. Antennas Propag. 2017, 65, 5595–5598. [Google Scholar] [CrossRef]
- Guan, D.-F.; You, P.; Zhang, Q.; Xiao, K.; Yong, S.-W. Hybrid Spoof Surface Plasmon Polariton and Substrate Integrated Waveguide Transmission Line and Its Application in Filter. IEEE Trans. Microw. Theory Tech. 2017, 65, 4925–4932. [Google Scholar] [CrossRef]
- Shen, S.; Xue, B.; Yu, M.; Xu, J. Integrated Mode Composite Transmission Line. IEEE Access 2019, 7, 41479–41491. [Google Scholar] [CrossRef]
- Ye, L.; Chen, Y.; Da Xu, K.; Li, W.; Liu, Q.H.; Zhang, Y. Substrate Integrated Plasmonic Waveguide for Microwave Bandpass Filter Applications. IEEE Access 2019, 7, 75957–75964. [Google Scholar] [CrossRef]
- Chen, D.G.; Eccleston, K.W. Substrate integrated waveguide with corrugated wall. In Proceedings of the 2008 Asia-Pacific Microwave Conference, Macau, China, 16–20 December 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Salehi, M.; Mehrshahi, E. A closed-form formula for dispersion characteristics of fundamental SIW mode. IEEE Microw. Wirel. Compon. Lett. 2011, 22, 4–6. [Google Scholar] [CrossRef]
- Talebi, N.; Shahabadi, M. Spoof surface plasmons propagating alonga periodically corrugated coaxial waveguide. J. Phys. D Appl. Phys. 2010, 43, 35302. [Google Scholar] [CrossRef]
- Wilkinson, E. An N-way hybrid power divider. IRE Trans. Microw. Theory Tech. 1960, MTT-8, 116–11118. [Google Scholar]
- Nguyen, M.G.; Nguyen, C.T.N.; Nguyen, T.H.; Morishita, H. Design of a Dual-Band Three-Way Power Divider with Unequally High Power Split Ratio. Radioengineering 2023, 32, 339. [Google Scholar] [CrossRef]
- Zhao, X.B.; Wei, F.; Zhang, P.F.; Shi, X.W. Mixed-Mode Magic-Ts and Their Applications on the Designs of Dual-Band Balanced Out-of-Phase Filtering Power Dividers. IEEE Trans. Microw. Theory Tech. 2023, 71, 3896–3905. [Google Scholar] [CrossRef]
- Salimi, P.; Jahromi, M.K.; Hossein, A.K.A. A Novel Design Method for Unequal Coupled Line Dual-Band Wilkinson Power Divider. Prog. Electromagn. Res. C 2023, 138, 175–189. [Google Scholar] [CrossRef]
- Danaeian, M. Novel single-layer dual-band half-mode substrate integrated waveguide filter and filtering power dividers with very compact sizes. Int. J. RF Microw. Comput.-Aided Eng. 2022, 32, e22951. [Google Scholar] [CrossRef]
- Mohra, A.S.S. Compact dual band Wilkinson power divider. Microw. Opt. Technol. Lett. 2008, 50, 1678–1682. [Google Scholar] [CrossRef]
- Liao, M.; Wu, Y.; Liu, Y.; Gao, J. Impedance-transforming dual-band out-of-phase power divider. IEEE Microw. Wirel. Compon. Lett. 2014, 24, 524–526. [Google Scholar] [CrossRef]
a | Lp1 | Lp2 | Wp1 | Wp2 | d | H |
---|---|---|---|---|---|---|
6 | 5 | 1.6 | 1.2 | 1.2 | 2.5 | 0.508 |
Lm1 | Lm2 | Lm3 | Wm1 | Wm2 | W | t |
1.4 | 13.73 | 17.38 | 1.1 | 3.8 | 10 | 0.018 |
Ref. | Transmission Line Type | Substrate Layer | Feeding Technique | Operating Frequencies (GHz) | |
---|---|---|---|---|---|
Low Band | High Band | ||||
[5] | MCW | 3 | Joint feeding | 8–10.3 | 27–37 |
[6] | DMCMS | 2 | Joint feeding | 3.5–12 | 35.6–41.6 |
[7] | SIW-MS | 2 | IMS | 5–6.4 | 29.2–30.9 |
[8] | SIW-CPW | 2 | Joint feeding | 3–10 | 25–40 |
This work | SSPPs-CSIW | 1 | IMS | 2.95–5.5 | 23.7–32 |
Lm1 | Lm2 | Lm3 | Lm4 | Wp1 | Wp2 | Wp3 | Wp4 | Wp5 | Lr |
---|---|---|---|---|---|---|---|---|---|
4 | 14.8 | 14.3 | 3.93 | 0.64 | 0.83 | 1.2 | 0.86 | 0.54 | 5.5 |
Lp1 | Lp2 | Lp3 | Lp4 | Lp5 | Wm1 | Wm2 | Wm3 | Ws | Ls |
0.55 | 2.28 | 6.0 | 1.03 | 2.17 | 1.1 | 5.26 | 2.06 | 0.39 | 9.72 |
d1 | d2 | d3 | d4 | d5 | d6 | d7 | a | Rp | |
9.25 | 4.13 | 0.2 | 2.7 | 9 | 9.6 | 1.34 | 6.0 | 4.51 |
Ref. | f1/f2 (GHz) | Frequency Ratio | Isolation (dB) A/B | Insertion Loss (dB) | Method |
---|---|---|---|---|---|
[26] | 0.98/1.98 | 2.02 | 14.8/16.7 | 0.6 | two-section impedance transformer |
[27] | 2.46/3.54 | 1.44 | 18/22 | 1.4 | microstrip transition |
[28] | 2.45/4.44 | 1.81 | 15/15 | 1.2 | novel dual-band resonator |
[29] | 2.4/3.5 | 1.46 | \ | 0.6 | evanescent mode technique |
[30] | 1.8/4.775 | 2.65 | 18/22 | 0.55 | dual-band Π-section transformation |
[31] | 1.5/2.4 | 1.6 | 10/10 | 0.8 | double-sided parallel strip line |
This work | 3.5/28.65 | 8.19 | 15/17 | 0.7 | MC-TL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Fang, L.; Zhou, Y. Dual-Band Large-Frequency Ratio Power Divider Using Mode Composite Transmission Line for 5G Communication Systems. J. Low Power Electron. Appl. 2024, 14, 20. https://doi.org/10.3390/jlpea14020020
Song K, Fang L, Zhou Y. Dual-Band Large-Frequency Ratio Power Divider Using Mode Composite Transmission Line for 5G Communication Systems. Journal of Low Power Electronics and Applications. 2024; 14(2):20. https://doi.org/10.3390/jlpea14020020
Chicago/Turabian StyleSong, Kaijun, Lele Fang, and Yedi Zhou. 2024. "Dual-Band Large-Frequency Ratio Power Divider Using Mode Composite Transmission Line for 5G Communication Systems" Journal of Low Power Electronics and Applications 14, no. 2: 20. https://doi.org/10.3390/jlpea14020020
APA StyleSong, K., Fang, L., & Zhou, Y. (2024). Dual-Band Large-Frequency Ratio Power Divider Using Mode Composite Transmission Line for 5G Communication Systems. Journal of Low Power Electronics and Applications, 14(2), 20. https://doi.org/10.3390/jlpea14020020