Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity
Abstract
:1. Introduction
- The idea of time series similarity is introduced for the first time for prediction of water levels in an open channel water transfer project.
- The slope-similar shape method is proposed to characterize water level changes in an open channel water transfer project.
- The real-time water level prediction in the case that the gate opening change at the next moment is known is challenged. The case study with the South-to-North Water Diversion Project in China has shown that the proposed method is feasible, effective, and interpretable.
2. Slope-Similar Shape
2.1. Definition
2.2. Shape Matrix
2.3. Similarity Measures
3. Study Area and Methods
3.1. Study Area
3.2. Methods
- (1)
- The water levels at the (n − 3)th, (n − 2)th, and (n – 1)th moments are in a stable state, where the upstream and downstream gate opening is kept constant and the water level variation is within 0.02 m. Then, these three data points form a query. Dataset that is slope-similar to query should also meet the above requirements.
- (2)
- The water level difference () at the nth moment is Class A or B.
- (3)
- The downstream gate opening () at the nth moment changes, while the upstream gate opening () is not required.
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, H.; Wang, Z.; Liu, B. Tournament incentive mechanisms based on fairness preference in large-scale water diversion projects. J. Clean. Prod. 2020, 265, 121861. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Wu, M.; Luan, X.; Wang, W.; Yu, Z. Influences of the south–to-north water diversion project and virtual water flows on regional water resources considering both water quantity and quality. J. Clean Prod. 2020, 244, 118920. [Google Scholar] [CrossRef]
- Ren, T.; Liu, X.; Niu, J.; Lei, X.; Zhang, Z. Real-time water level prediction of cascaded channels based on multilayer perception and recurrent neural network. J. Hydrol. 2020, 585, 124783. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Lei, X.; Wang, H. Real-time forecasting of river water level in urban based on radar rainfall: A case study in Fuzhou City. J. Hydrol. 2021, 603, 126820. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Feng, W.; Huang, H. Short Term Real-Time Rolling Forecast of Urban River Water Levels Based on LSTM: A Case Study in Fuzhou City, China. Int. J. Environ. Res. Public Health 2021, 18, 9287. [Google Scholar] [CrossRef]
- Berkhahn, S.; Fuchs, L.; Neuweiler, I. An ensemble neural network model for real-time prediction of urban floods. J. Hydrol. 2019, 575, 743–754. [Google Scholar] [CrossRef]
- Guo, T.; He, W.; Jiang, Z.; Chu, X.; Malekian, R.; Li, Z. An Improved LSSVM Model for Intelligent Prediction of the Daily Water Level. Energies 2019, 12, 112. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yang, G.; Wan, R.; Dai, X.; Zhang, Y. Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang Lake in China. Hydrol. Res. 2016, 47, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Shiri, J.; Shamshirband, S.; Kisi, O.; Karimi, S.; Bateni, S.M.; Hosseini Nezhad, S.H.; Hashemi, A. Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach. Water Resour. Manag. 2016, 30, 5217–5229. [Google Scholar] [CrossRef]
- Basu, B.; Morrissey, P.; Gill, L.W. Application of nonlinear time series and machine learning algorithms for forecasting groundwater flooding in a lowland karst area. Water Resour. Res. 2022, 58, e2021WR029576. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Kim, J.; Lee, M.; Wang, W.; Kim, H.S. Comparative analysis of long short-term memory and storage function model for flood water level forecasting of bokha stream in namhan river, korea. J. Hydrol. 2022, 606, 127415. [Google Scholar] [CrossRef]
- Ming, X.; Liang, Q.; Xia, X.; Li, D.; Fowler, H.J. Real-time flood forecasting based on a high-performance 2-d hydrodynamic model and numerical weather predictions. Water Resour. Res. 2020, 56, e2019WR025583. [Google Scholar] [CrossRef]
- Piadeh, F.; Behzadian, K.; Alani, A.M. A critical review of real-time modelling of flood forecasting in urban drainage systems. J. Hydrol. 2022, 607, 127476. [Google Scholar] [CrossRef]
- Wu, R.-S.; Sin, Y.-Y.; Wang, J.-X.; Lin, Y.-W.; Wu, H.-C.; Sukmara, R.B.; Indawati, L.; Hussain, F. Real-time flood warning system application. Water 2022, 14, 1866. [Google Scholar] [CrossRef]
- Bathaee, Y. The artificial intelligence black box and the failure of intent and causation. Harv. J. Law Technol. 2018, 31, 889. [Google Scholar]
- Faloutsos, C.; Ranganathan, M.; Manolopoulos, Y. Fast subsequence matching in time-series databases. In Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, Minneapolis, MN, USA, 24–27 May 1994; Association for Computing Machinery: Minneapolis, MN, USA, 1994; pp. 419–429. [Google Scholar]
- Keogh, E.J.; Chakrabarti, K.; Pazzani, M.J.; Mehrotra, S.J.K.; Systems, I. Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases. Knowl. Inf. Syst. 2001, 3, 263–286. [Google Scholar] [CrossRef]
- Dong, X.; Gu, C.; Wang, Z. Research on Shape-Based Time Series Similarity Measure. In Proceedings of the 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 13–16 August 2006; pp. 1253–1258.18. [Google Scholar]
- Wang, D. Pattern distance of time series. WIT Trans. Inf. Commun. Technol. 2003, 29, 10. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, M. Assessment of the economic impact of South-to-North Water Diversion Project on industrial sectors in Beijing. J. Econ. Struct. 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Geng, S.; Zhou, Y.; Zhang, M.; Smallwood, K.S. A Sustainable Agro-ecological Solution to Water Shortage in the North China Plain (Huabei Plain). J. Environ. Plan. Manag. 2001, 44, 345–355. [Google Scholar] [CrossRef]
- Rogers, S.; Chen, D.; Jiang, H.; Rutherfurd, I.; Wang, M.; Webber, M.; Crow-Miller, B.; Barnett, J.; Finlayson, B.; Jiang, M.; et al. An integrated assessment of China’s South—North Water Transfer Project. Geogr. Res. 2020, 58, 49–63. [Google Scholar] [CrossRef]
- Gogolou, A.; Tsandilas, T.; Palpanas, T.; Bezerianos, A. Comparing Similarity Perception in Time Series Visualizations. IEEE Trans. Vis. Comput. Graph. 2019, 25, 523–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Shape Type | Same Slope | Congruent Direction | Same Length | Same Point Position |
---|---|---|---|---|
Slope-Similar Shapes | √ 1 | √ | ||
Congruent Shapes | √ | √ | √ | |
Same Shapes | √ | √ | √ | √ |
Relation to Shape (1) | Congruent Direction | |
---|---|---|
Same | Opposite | |
Slope-similar shapes | a/b/e | c/d |
Congruent shapes | e | c |
Same shapes | (1) | None |
Shape Type | Maximum Deviation | Cumulative Deviation |
---|---|---|
Slope-similar shapes | slope | slope |
Congruent shapes | slope/length | slope/length |
Same shapes | slope/length/point position | slope/length/point position |
Dimensions and Metrics | Slope | Length | Point Position |
---|---|---|---|
Maximum deviation | 1 | ||
Cumulative deviation |
No. | Date and Time | Water Level before the Gate (m) | Gate-Hole 1 (mm) | Gate-Hole 2 (mm) | Flow (m3/s) | Outlet 1 (m3/s) | Outlet 2 (m3/s) |
---|---|---|---|---|---|---|---|
4 | 2017-*-* 00:00:00 | 144.5588 | 1800 | 1800 | 174.3318 | 01 | 0 |
4 | 2017-*-* 02:00:00 | 144.5545 | 1800 | 1800 | 176.2681 | 0 | 0 |
4 | ……… | … | … | … | … | … | … |
4 | 2018-*-* 00:00:00 | 144.6506 | 1280 | 1280 | 142.9575 | 0 | 0 |
4 | ……… | … | … | … | … | … | … |
4 | 2021-*-* 18:00:00 | 144.6653 | 4260 | 4260 | 298.6489 | 0 | 0 |
4 | 2021-*-* 20:00:00 | 144.6877 | 4260 | 4260 | 301.7434 | 0 | 0 |
Gate | Δz = 0 | |Δz| ≤ 0.05 m | |Δz| ≤ 0.1 m | |Δz| ≤ 0.2 m | 0.2 < |Δz| ≤ 2 m |
---|---|---|---|---|---|
3 | 9116 | 6356 | 50 | 14 | 9 |
4 | 10,171 | 5318 | 42 | 8 | 6 |
5 | 7868 | 7598 | 58 | 17 | 4 |
6 | 10,496 | 4974 | 54 | 8 | 3 |
7 | 8976 | 6501 | 43 | 13 | 2 |
No. | Query Index | Predicted Data (m) | (m) | (mm) | (mm) | Matching Gates |
---|---|---|---|---|---|---|
1 | 165–167 | 142.8806 | −0.07 | 200 | 280 | 4/5/6 |
2 | 2436–2438 | 142.9752 | −0.08 | 240 | 240 | 4/5/6 |
3 | 3231–3233 | 142.8062 | 0.06 | −300 | −600 | 4/5/6 |
4 | 11,802–11,804 | 143.22 | −0.07 | −2700 | −3275 | 4/5/6 |
5 | 12,043–12,045 | 143.3324 | −0.06 | 400 | 400 | 4/5/6 |
6 | 12,250–12,252 | 143.1059 | −0.06 | 0 | 150 | 4/5/6 |
7 | 12,825–12,827 | 143.12 | 0.06 | −340 | −400 | 4/5/6 |
8 | 148–150 | 142.9767 | −0.05 | 250 | 200 | 4/5/6 |
9 | 207–209 | 143.0487 | −0.02 | 0 | 40 | 4/5/6 |
10 | 476–478 | 143 | 0.04 | −300 | −270 | 4/5/6 |
11 | 561–563 | 143.0766 | 0.03 | −90 | −100 | 4/5/6 |
12 | 1077–1079 | 142.9208 | 0.02 | 0 | −110 | 4/5/6 |
13 | 2152–2154 | 142.9296 | −0.04 | 145 | 150 | 4/5/6 |
14 | 2399–2401 | 142.9333 | 0.02 | 0 | −60 | 4/5/6 |
15 | 2543–2545 | 142.9209 | −0.03 | 310 | 150 | 4/5/6 |
No. | Gate 4 | Gate 5 | Gate 6 | |||
---|---|---|---|---|---|---|
SSS | BSSS | SSS | BSSS | SSS | BSSS | |
1 | 2843 | 1 | 3561 | 2 | 2509 | 1 |
2 | 695 | 1 | 1382 | 1 | 565 | 1 |
3 | 2991 | 1 | 3985 | 2 | 2777 | 2 |
4 | 3012 | 0 | 4006 | 0 | 2797 | 0 |
5 | 2801 | 1 | 3496 | 1 | 2507 | 1 |
6 | 2991 | 1 | 3995 | 1 | 2778 | 2 |
7 | 3014 | 1 | 4053 | 1 | 2791 | 1 |
8 | 2987 | 1 | 3961 | 2 | 2783 | 1 |
9 | 2622 | 1 | 3568 | 1 | 2367 | 2 |
10 | 2851 | 1 | 3713 | 1 | 2536 | 1 |
11 | 2784 | 1 | 3393 | 1 | 2493 | 1 |
12 | 2009 | 1 | 3195 | 1 | 1693 | 2 |
13 | 2990 | 2 | 3950 | 1 | 2787 | 1 |
14 | 1694 | 1 | 2775 | 1 | 1364 | 1 |
15 | 2846 | 1 | 3684 | 2 | 2531 | 1 |
No. | Gate 4 | Gate 5 | Gate 6 | |||
---|---|---|---|---|---|---|
(m) | Error (m) | (m) | Error (m) | (m) | Error (m) | |
1 | 0 | 0.07 | −0.03 | 0.04 | −0.05 | 0.02 |
2 | −0.01 | 0.07 | −0.03 | 0.05 | −0.04 | 0.04 |
3 | 0.06 | 0 | −0.03 | −0.09 | 0.02 | −0.04 |
4 | / | / | / | / | / | / |
5 | −0.01 | 0.05 | −0.02 | 0.04 | −0.01 | 0.05 |
6 | −0.01 | 0.05 | −0.01 | 0.05 | −0.02 | 0.04 |
7 | 0.05 | −0.01 | 0.01 | −0.05 | 0.02 | −0.04 |
8 | −0.01 | 0.04 | −0.03 | 0.02 | −0.04 | 0.01 |
9 | 0 | 0.02 | −0.01 | 0.01 | −0.01 | 0.01 |
10 | −0.02 | −0.06 | 0.01 | −0.03 | 0.01 | −0.03 |
11 | −0.02 | −0.05 | 0.01 | −0.02 | 0.01 | −0.02 |
12 | 0.02 | 0 | 0.02 | 0 | 0.02 | 0 |
13 | −0.01 | 0.03 | −0.02 | 0.02 | −0.02 | 0.02 |
14 | 0.02 | 0 | −0.01 | −0.03 | 0.01 | −0.01 |
15 | −0.01 | 0.02 | −0.03 | 0 | −0.02 | 0.01 |
No. | Predicted Water Level (m) | Errors (m) | Gate Source | Index | (mm) | (mm) |
---|---|---|---|---|---|---|
1 | 142.9006 | 0.02 | 6 | 151 | 200 | 250 |
2 | 143.0252 | 0.05 | 5 | 10,657 | 240 | 260 |
3 | 142.8062 | 0 | 4 | 9035 | −600 | −600 |
4 | 143.22 | / | / | / | / | / |
5 | 143.3824 | 0.05 | 4 | 11,073 | 400 | 400 |
6 | 143.1059 | 0.05 | 4 | 8074 | 0 | 150 |
7 | 143.08 | −0.04 | 6 | 8865 | −350 | −400 |
8 | 142.9867 | 0.01 | 6 | 15,149 | 220 | 200 |
9 | 143.0587 | 0.01 | 5 | 8319 | 0 | 40 |
10 | 142.97 | −0.03 | 6 | 8675 | −250 | −250 |
11 | 143.0566 | −0.02 | 6 | 4483 | −110 | −130 |
12 | 142.9208 | 0 | 4 | 8232 | 0 | −130 |
13 | 142.9496 | 0.02 | 6 | 12,249 | 150 | 150 |
14 | 142.9333 | 0 | 4 | 3258 | 0 | −60 |
15 | 142.9309 | 0.01 | 6 | 12,249 | 150 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Zhang, Z.; Zhang, W.; An, K.; Lei, X.; He, M. Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity. Water 2022, 14, 2070. https://doi.org/10.3390/w14132070
Zhou L, Zhang Z, Zhang W, An K, Lei X, He M. Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity. Water. 2022; 14(13):2070. https://doi.org/10.3390/w14132070
Chicago/Turabian StyleZhou, Luyan, Zhao Zhang, Weijie Zhang, Kaijun An, Xiaohui Lei, and Ming He. 2022. "Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity" Water 14, no. 13: 2070. https://doi.org/10.3390/w14132070
APA StyleZhou, L., Zhang, Z., Zhang, W., An, K., Lei, X., & He, M. (2022). Real-Time Water Level Prediction in Open Channel Water Transfer Projects Based on Time Series Similarity. Water, 14(13), 2070. https://doi.org/10.3390/w14132070