Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,753)

Search Parameters:
Authors = Jung Choi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 247 KiB  
Article
Hysterectomy for Benign Gynecologic Disease: A Comparative Study of Articulating Laparoscopic Instruments and Robot-Assisted Surgery in Korea and Taiwan
by Jun-Hyeong Seo, Young Eun Chung, Seongyun Lim, Chel Hun Choi, Tyan-Shin Yang, Yen-Ling Lai, Jung Chen, Kazuyoshi Kato, Yi-Liang Lee, Yu-Li Chen and Yoo-Young Lee
Medicina 2025, 61(8), 1418; https://doi.org/10.3390/medicina61081418 - 5 Aug 2025
Abstract
Background and Objectives: Hysterectomy is a common non-obstetric procedure. Minimally invasive techniques, such as laparoscopy and robot-assisted surgery, have replaced open surgery for benign gynecologic conditions. Robotic surgery offers reduced blood loss and shorter hospital stays but is limited by high costs. [...] Read more.
Background and Objectives: Hysterectomy is a common non-obstetric procedure. Minimally invasive techniques, such as laparoscopy and robot-assisted surgery, have replaced open surgery for benign gynecologic conditions. Robotic surgery offers reduced blood loss and shorter hospital stays but is limited by high costs. Articulating laparoscopic instruments aim to replicate robotic dexterity cost-effectively. However, comparative data on these two approaches in hysterectomy are limited. Materials and Methods: This multicenter study analyzed the outcomes of hysterectomies for benign gynecological diseases using articulating laparoscopic instruments (prospectively recruited) and robot-assisted surgery (retrospectively reviewed). The surgeries were performed by minimally invasive gynecological surgeons in South Korea, Japan, and Taiwan. The baseline characteristics, operative details, and outcomes, including operative time, blood loss, complications, and hospital stay, were compared. Statistical significance was set at p < 0.05. Results: A total of 151 patients were analyzed, including 67 in the articulating laparoscopy group and 84 in the robot-assisted group. The operating times were comparable (114.9 vs. 119.9 min, p = 0.22). The articulating group primarily underwent dual-port surgery (79.1%), whereas the robot-assisted group required four or more ports in 71.4% of the cases (p < 0.001). Postoperative complications occurred in both groups, without a significant difference (9.0% vs. 3.6%, p = 0.17). No severe complications or significant differences in the 30-day readmission rates were observed. Conclusions: Articulating laparoscopic instruments provide outcomes comparable to robot-assisted surgery in hysterectomy while reducing the number of ports required. Further studies are needed to explore the learning curve and long-term impact on surgical outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Gynecological Surgery)
14 pages, 2544 KiB  
Article
Colorectal Cancer Risk in Korean Patients with Inflammatory Bowel Disease: A Nationwide Big Data Study of Subtype and Socioeconomic Disparities
by Kyeong Min Han, Ho Suk Kang, Joo-Hee Kim, Hyo Geun Choi, Dae Myoung Yoo, Nan Young Kim, Ha Young Park and Mi Jung Kwon
J. Clin. Med. 2025, 14(15), 5503; https://doi.org/10.3390/jcm14155503 - 5 Aug 2025
Viewed by 20
Abstract
Background/Objectives: The two major subtypes of inflammatory bowel disease (IBD)—Crohn’s disease (CD) and ulcerative colitis (UC)—are known to increase the likelihood of developing colorectal cancer (CRC). While this relationship has been well studied in Western populations, evidence from East Asia remains limited [...] Read more.
Background/Objectives: The two major subtypes of inflammatory bowel disease (IBD)—Crohn’s disease (CD) and ulcerative colitis (UC)—are known to increase the likelihood of developing colorectal cancer (CRC). While this relationship has been well studied in Western populations, evidence from East Asia remains limited and inconsistent. Using nationwide cohort data, this study explored the potential connection between IBD and CRC in a large Korean population. Methods: We conducted a retrospective cohort study using data from the Korean National Health Insurance Service–National Sample Cohort from 2005 to 2019. A total of 9920 CRC patients were matched 1:4 with 39,680 controls using propensity scores based on age, sex, income, and region. Overlap weighting and multivariable logistic regression were used to evaluate the association between IBD and CRC. Subgroup analyses were conducted to assess effect modification by demographic and clinical factors. Results: IBD markedly increased the likelihood of developing CRC (adjusted odds ratio (aOR) = 1.38; 95% confidence interval (CI): 1.20–1.58; p < 0.001), with the association primarily driven by UC (aOR = 1.52; 95% CI: 1.27–1.83). CD appeared unrelated to heightened CRC risk overall, though a significant association was observed among low-income CD patients (aOR = 1.58; 95% CI: 1.15–2.16). The UC–CRC association persisted across all subgroups, including patients without comorbidities. Conclusions: Our findings support an independent association between IBD—particularly UC—and increased CRC risk in Korea. These results underscore the need for personalized CRC surveillance strategies that account for disease subtype, comorbidity burden, and socioeconomic status, especially in vulnerable subpopulations. Full article
Show Figures

Figure 1

15 pages, 449 KiB  
Article
Association Between Rest–Activity Rhythm and 27-Hydroxycholesterol (27-OH) in Patients with Amnestic Mild Cognitive Impairment (aMCI)
by Seong Jae Kim, Jung Hie Lee, Jae-Won Jang, Minseo Choi and In Bum Suh
J. Clin. Med. 2025, 14(15), 5481; https://doi.org/10.3390/jcm14155481 - 4 Aug 2025
Viewed by 167
Abstract
Background/Objectives: Rest–activity rhythm (RAR) disturbances can contribute to aging and dementia via metabolic dysregulation. Hydroxycholesterol (OH) is thought to mediate the link between hypercholesterolemia and neurodegeneration. This study compared sleep and RAR parameters between amnestic mild cognitive impairment (aMCI) patients and normal [...] Read more.
Background/Objectives: Rest–activity rhythm (RAR) disturbances can contribute to aging and dementia via metabolic dysregulation. Hydroxycholesterol (OH) is thought to mediate the link between hypercholesterolemia and neurodegeneration. This study compared sleep and RAR parameters between amnestic mild cognitive impairment (aMCI) patients and normal controls (NCs), and examined their associations with plasma 27-OH levels, reflecting peripheral cholesterol metabolism. Methods In total, 18 aMCI patients (76.6 ± 6.1 years) and 21 NCs (70.4 ± 6.7 years) underwent five-day actigraphy and dim light melatonin onset assessment. Plasma 27-OH levels were measured via high-performance liquid chromatography-mass spectrometry. Generalized linear models (GLMs) were used to analyze the relationships between sleep, RAR, and 27-OH levels. Results: The aMCI group had significantly lower 27-OH levels and 27-OH/total cholesterol ratios (p < 0.05). GLM revealed that longer sleep onset latency (SOL) was associated with higher 27-OH levels in aMCI, distinguishing them from NCs. Additionally, in aMCI, longer SOL, lower sleep efficiency (SE), and higher fragmentation index (FI) were associated with an increased 27-OH/total cholesterol ratio (p < 0.05). Higher relative amplitude of RAR was linked to lower 27-OH levels across groups (p < 0.01), but RAR parameters showed no significant association with the 27-OH/total cholesterol ratio. Sleep disturbances, including prolonged SOL, reduced SE, and increased FI, were associated with altered peripheral cholesterol oxygenation in aMCI. Conclusions: Greater RAR amplitude correlated with lower 27-OH levels, regardless of cognitive status. These findings suggest that peripheral cholesterol oxygenation in aMCI is related to both sleep disturbances and circadian rhythm dysregulation, highlighting their role in cholesterol metabolism and neurodegeneration. Full article
Show Figures

Figure 1

14 pages, 4194 KiB  
Article
Crystal Structure of Anthranilate Phosphoribosyltransferase from Methanocaldococcus jannaschii
by Jung-Min Choi
Crystals 2025, 15(8), 702; https://doi.org/10.3390/cryst15080702 - 31 Jul 2025
Viewed by 172
Abstract
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has [...] Read more.
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has been a central target for metabolic engineering to enhance microbial production. Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the second step of the pathway by transferring a phosphoribosyl group from PRPP to anthranilate, forming phosphoribosyl anthranilate (PRA). AnPRT, the sole member of class IV phosphoribosyltransferases, adopts a unique fold and functions as a homodimer. While the structural basis of AnPRT activity has been elucidated in several organisms, thermostable variants remain underexplored despite their relevance for high-temperature bioprocessing. In this study, the crystal structure of AnPRT from the thermophilic archaeon Methanocaldococcus jannaschii (MjAnPRT) was determined at a 2.16 Å resolution. The enzyme exhibits a conserved dimeric architecture and key catalytic motifs. Comparative structural analysis with mesophilic and hyper thermophilic homologs revealed that MjAnPRT possesses enhanced local stability in catalytically important regions and strengthened inter-subunit interactions. These features likely contribute to its thermostability and provide a valuable framework for the rational design of robust AnPRTs for industrial and synthetic biology applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

18 pages, 13869 KiB  
Article
Spatial Omics Profiling of Treatment-Naïve Lung Adenocarcinoma with Brain Metastasis as the Initial Presentation
by Seoyeon Gwon, Inju Cho, Jieun Lee, Seung Yun Lee, Kyue-Hee Choi and Tae-Jung Kim
Cancers 2025, 17(15), 2529; https://doi.org/10.3390/cancers17152529 - 31 Jul 2025
Viewed by 300
Abstract
Background/Objectives: Brain metastasis (BM) is a common and often early manifestation in lung adenocarcinoma (LUAD), yet its tumor microenvironment remains poorly defined at the time of initial diagnosis. This study aims to characterize early immune microenvironmental alterations in synchronous BM using spatial proteomic [...] Read more.
Background/Objectives: Brain metastasis (BM) is a common and often early manifestation in lung adenocarcinoma (LUAD), yet its tumor microenvironment remains poorly defined at the time of initial diagnosis. This study aims to characterize early immune microenvironmental alterations in synchronous BM using spatial proteomic profiling. Methods: We performed digital spatial proteomic profiling using the NanoString GeoMx platform on formalin-fixed paraffin-embedded tissues from five treatment-naïve LUAD patients in whom BM was the initial presenting lesion. Paired primary lung and brain metastatic samples were analyzed across tumor and stromal compartments using 68 immune- and tumor-related protein markers. Results: Spatial profiling revealed distinct expression patterns between primary tumors and brain metastases. Immune regulatory proteins—including IDO-1, PD-1, PD-L1, STAT3, PTEN, and CD44—were significantly reduced in brain metastases (p < 0.01), whereas pS6, a marker of activation-induced T-cell death, was significantly upregulated (p < 0.01). These alterations were observed in both tumor and stromal regions, suggesting a more immunosuppressive and apoptotic microenvironment in brain lesions. Conclusions: This study provides one of the first spatially resolved proteomic characterizations of synchronous BM at initial LUAD diagnosis. Our findings highlight early immune escape mechanisms and suggest the need for site-specific immunotherapeutic strategies in patients with brain metastasis. Full article
(This article belongs to the Special Issue Lung Cancer Proteogenomics: New Era, New Insights)
Show Figures

Figure 1

20 pages, 9169 KiB  
Article
Dynamic Mission Planning Framework for Collaborative Underwater Operations Using Behavior Trees
by Seunghyuk Choi and Jongdae Jung
J. Mar. Sci. Eng. 2025, 13(8), 1458; https://doi.org/10.3390/jmse13081458 - 30 Jul 2025
Viewed by 235
Abstract
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each [...] Read more.
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each encapsulated in an independent sub-tree to enable modular error handling and seamless phase transitions. The AUV and mothership operate entirely underwater, with real-time docking to a moving platform. An extended Kalman filter (EKF) fuses data from inertial, pressure, and acoustic sensors for accurate navigation and state estimation. At the same time, obstacle avoidance leverages forward-looking sonar (FLS)-based potential field methods to react to unpredictable underwater hazards. The system is implemented on the robot operating system (ROS) and validated in the Stonefish physics engine simulator. Simulation results demonstrate reliable mission execution, successful dynamic docking under communication delays and sensor noise, and robust retrieval from injected faults, confirming the validity and stability of the proposed architecture. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

14 pages, 2566 KiB  
Review
Improved Biomass Production and Secondary Metabolism: A Critical Review of Grafting in Cannabis sativa
by S. M. Ahsan, Md. Injamum-Ul-Hoque, Md. Mezanur Rahman, Sang-Mo Kang, In-Jung Lee and Hyong Woo Choi
Plants 2025, 14(15), 2347; https://doi.org/10.3390/plants14152347 - 30 Jul 2025
Viewed by 496
Abstract
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal [...] Read more.
Cannabis sativa L. is a versatile plant with applications in various sectors such as agriculture, medicine, food, and cosmetics. The therapeutic properties of cannabis are often linked to its secondary compounds. The worldwide cannabis market is undergoing swift changes due to varying legal frameworks. Medicinal cannabis (as a heterozygous and dioecious species) is distinct from most annual crops grown in controlled environments, typically propagated through stem cutting rather than seeds to ensure genetic uniformity. Consequently, as with any commercially cultivated crop, biomass yield plays a crucial role in overall productivity. The key factors involved in cultivation conditions, such as successful root establishment, stress tolerance, and the production cycle duration, are critical for safeguarding, improving, and optimizing plant yield. Grafting is a long-established horticultural practice that mechanically joins the scion and rootstock of distinct genetic origins by merging their vascular systems. This approach can mitigate undesirable traits by leveraging the strengths of particular plants, proving beneficial to various applications. Grafting is not used commercially in Cannabis. Only three very recent investigations suggest that grafting holds significant promise for enhancing both the agronomic and medicinal potential of Cannabis. This review critically examines the latest advancements in cannabis grafting and explores prospects for improving biomass (stem, root, flower, etc.) yield and secondary metabolite production. Full article
Show Figures

Figure 1

13 pages, 3623 KiB  
Article
Fabrication and Characterization of Ferroelectric Capacitors with a Symmetric Hybrid TiN/W/HZO/W/TiN Electrode Structure
by Ha-Jung Kim, Jae-Hyuk Choi, Seong-Eui Lee, So-Won Kim and Hee-Chul Lee
Materials 2025, 18(15), 3547; https://doi.org/10.3390/ma18153547 - 29 Jul 2025
Viewed by 270
Abstract
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN [...] Read more.
In this study, Hf0.5Zr0.5O2 (HZO) thin-films were deposited using a Co-plasma atomic layer deposition (CPALD) process that combined both remote plasma and direct plasma, for the development of ferroelectric memory devices. Ferroelectric capacitors with a symmetric hybrid TiN/W/HZO/W/TiN electrode structure, incorporating W electrodes as insertion layers, were fabricated. Rapid thermal annealing (RTA) was subsequently employed to control the crystalline phase of the films. The electrical and structural properties of the capacitors were analyzed based on the RTA temperature, and the presence, thickness, and position of the W insertion electrode layer. Consequently, the capacitor with 5 nm-thick W electrode layers inserted on both the top and bottom sides and annealed at 700 °C exhibited the highest remnant polarization (2Pr = 61.0 μC/cm2). Moreover, the symmetric hybrid electrode capacitors annealed at 500–600 °C also exhibited high 2Pr values of approximately 50.4 μC/cm2, with a leakage current density of approximately 4 × 10−5 A/cm2 under an electric field of 2.5 MV/cm. The findings of this study are expected to contribute to the development of electrode structures for improved performance of HZO-based ferroelectric memory devices. Full article
Show Figures

Figure 1

21 pages, 1909 KiB  
Article
Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined Models
by Seoyun Choi, Youngmi Lee, Minwoo Lee, Jung Hee Byon and Eun Jung Choi
Diagnostics 2025, 15(15), 1895; https://doi.org/10.3390/diagnostics15151895 - 29 Jul 2025
Viewed by 307
Abstract
Background/Objectives: To develop a DL-based model predicting recurrence risk in HER2-low breast cancer patients and to compare performance of the MRI-alone, clinicopathologic-alone, and combined models. Methods: We analyzed 453 patients with HER2-low breast cancer who underwent surgery and preoperative breast MRI between May [...] Read more.
Background/Objectives: To develop a DL-based model predicting recurrence risk in HER2-low breast cancer patients and to compare performance of the MRI-alone, clinicopathologic-alone, and combined models. Methods: We analyzed 453 patients with HER2-low breast cancer who underwent surgery and preoperative breast MRI between May 2018 and April 2022. Patients were randomly assigned to either a training cohort (n = 331) or a test cohort (n = 122). Imaging features were extracted from DCE-MRI and ADC maps, with regions of interest manually annotated by radiologists. Clinicopathological features included tumor size, nodal status, histological grade, and hormone receptor status. Three DL prediction models were developed: a CNN-based MRI-alone model, a clinicopathologic-alone model based on a multi-layer perceptron (MLP) and a combined model integrating CNN-extracted MRI features with clinicopathological data via MLP. Model performance was evaluated using AUC, sensitivity, specificity, and F1-score. Results: The MRI-alone model achieved an AUC of 0.69 (95% CI, 0.68–0.69), with a sensitivity of 37.6% (95% CI, 35.7–39.4), specificity of 87.5% (95% CI, 86.9–88.2), and F1-score of 0.34 (95% CI, 0.33–0.35). The clinicopathologic-alone model yielded the highest AUC of 0.92 (95% CI, 0.92–0.92) and sensitivity of 93.6% (95% CI, 93.4–93.8), but showed the lowest specificity (72.3%, 95% CI, 71.8–72.8) and F1-score of 0.50 (95% CI, 0.49–0.50). The combined model demonstrated the most balanced performance, achieving an AUC of 0.90 (95% CI, 0.89–0.91), sensitivity of 80.0% (95% CI, 78.7–81.3), specificity of 83.2% (95% CI: 82.7–83.6), and the highest F1-score of 0.55 (95% CI, 0.54–0.57). Conclusions: The DL-based model combining MRI and clinicopathological features showed superior performance in predicting recurrence in HER2-low breast cancer. This multimodal approach offers a framework for individualized risk assessment and may aid in refining follow-up strategies. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

25 pages, 8335 KiB  
Article
Integrative In Silico and In Vivo Analysis of Banhasasim-Tang for Irritable Bowel Syndrome: Mechanistic Insights into Inflammation-Related Pathways
by Woo-Gyun Choi, Seok-Jae Ko, Jung-Ha Shim, Chang-Hwan Bae, Seungtae Kim, Jae-Woo Park and Byung-Joo Kim
Pharmaceuticals 2025, 18(8), 1123; https://doi.org/10.3390/ph18081123 - 27 Jul 2025
Viewed by 445
Abstract
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS [...] Read more.
Background/Objectives: Banhasasim-tang (BHSST) is a traditional herbal formula commonly used to treat gastrointestinal (GI) disorders and has been considered a potential therapeutic option for irritable bowel syndrome (IBS). This study aimed to explore the molecular targets and underlying mechanisms of BHSST in IBS using a combination of network pharmacology, molecular docking, molecular dynamics simulations, and in vivo validation. Methods: Active compounds in BHSST were screened based on drug-likeness and oral bioavailability. Potential targets were predicted using ChEMBL, and IBS-related targets were obtained from GeneCards and DisGeNET. A compound–target–disease network was constructed and analyzed via Gene Ontology and KEGG pathway enrichment. Compound–target interactions were further assessed using molecular docking and molecular dynamics simulations. The in vivo effects of eudesm-4(14)-en-11-ol, elemol, and BHSST were evaluated in a zymosan-induced IBS mouse model. Results: Twelve BHSST-related targets were associated with IBS, with enrichment analysis identifying TNF signaling and apoptosis as key pathways. In silico simulations suggested stable binding of eudesm-4(14)-en-11-ol to TNF-α and kanzonol T to PIK3CD, whereas elemol showed weak interaction with PRKCD. In vivo, eudesm-4(14)-en-11-ol improved colon length, weight, stool consistency, TNF-α levels, and pain-related behaviors—effects comparable to those of BHSST. Elemol, however, showed no therapeutic benefit. Conclusions: These findings provide preliminary mechanistic insight into the anti-inflammatory potential of BHSST in IBS. The integrated in silico and in vivo approaches support the contribution of specific components, such as eudesm-4(14)-en-11-ol, to its observed effects, warranting further investigation. Full article
(This article belongs to the Special Issue Network Pharmacology of Natural Products, 2nd Edition)
Show Figures

Figure 1

21 pages, 966 KiB  
Article
Mathematical Modeling and Microparticle Size Control for Enhancing Heat Transfer Efficiency in High-Viscosity Food Suspensions
by Hyeonbo Lee, Mi-Jung Choi and Jiseon Lee
Foods 2025, 14(15), 2625; https://doi.org/10.3390/foods14152625 - 26 Jul 2025
Viewed by 168
Abstract
This study investigated how microparticle size affects natural convective heat transfer in high-viscosity suspensions. Suspensions were formulated using 0.5% xanthan gum and 3% stearic acid, with particle sizes ranging from 120 to 750 nm. Key thermal properties, including thermal conductivity (0.598–0.679 W/m·K), specific [...] Read more.
This study investigated how microparticle size affects natural convective heat transfer in high-viscosity suspensions. Suspensions were formulated using 0.5% xanthan gum and 3% stearic acid, with particle sizes ranging from 120 to 750 nm. Key thermal properties, including thermal conductivity (0.598–0.679 W/m·K), specific heat, and the volumetric thermal expansion coefficient (0.990–1.000/°C), were measured. Rheological analysis based on the Herschel–Bulkley model revealed that reducing the particle size increased the consistency index from 0.56 to 0.75 Pa·s, while reducing the flow index from 0.63 to 0.50. This indicates enhanced shear-thinning behavior. A Rayleigh–Bénard convection system revealed that suspensions containing smaller particles exhibited higher Rayleigh and Nusselt numbers under large temperature gradients. Nusselt numbers reached values of up to 100 at a temperature difference of 9 °C. Conversely, suspensions containing larger particles exhibited relatively higher Rayleigh and Nusselt numbers under smaller temperature differences. These results demonstrate that optimizing microparticle size can enhance the efficiency of heat transfer in high-viscosity suspensions depending on the applied thermal gradient. This has practical implications for improving heat transfer in food and other viscous systems where convection is limited. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 1949 KiB  
Article
Serum Trimethylamine N-Oxide as a Diagnostic and Prognostic Biomarker in Dogs with Chronic Kidney Disease: A Pilot Study
by Seung-Ju Kang, Wan-Gyu Kim, Keon Kim, Chang-Hyeon Choi, Jong-Hwan Park, Seog-Jin Kang, Chang-Min Lee, Yoon Jung Do and Woong-Bin Ro
Animals 2025, 15(15), 2170; https://doi.org/10.3390/ani15152170 - 23 Jul 2025
Viewed by 199
Abstract
Trimethylamine N-oxide (TMAO) is known to increase in human cardiovascular, metabolic, and renal diseases. In human medicine, TMAO has recently been utilized as a diagnostic and prognostic biomarker for renal dysfunction, and research is ongoing regarding its potential as a therapeutic target. This [...] Read more.
Trimethylamine N-oxide (TMAO) is known to increase in human cardiovascular, metabolic, and renal diseases. In human medicine, TMAO has recently been utilized as a diagnostic and prognostic biomarker for renal dysfunction, and research is ongoing regarding its potential as a therapeutic target. This study aimed to evaluate the diagnostic and prognostic potential of TMAO as a supportive biomarker in dogs with chronic kidney disease (CKD). To assess its diagnostic utility, TMAO concentrations were compared between a CKD group (n = 32) and a healthy control group (n = 32). In addition, patients with CKD were subdivided into stages 2 (n = 12), 3 (n = 11), and 4 (n = 9) and compared individually with the healthy controls. For prognostic evaluation, the CKD group was monitored over six months, and the TMAO levels were compared between survivors (n = 18) and non-survivors (n = 14). The TMAO concentrations showed a highly significant difference between patients with CKD and healthy controls (p < 0.0001). Patients with each different CKD stage exhibited statistically significant differences compared with the healthy controls (p < 0.05). Furthermore, the median TMAO levels tended to increase with advancing CKD stage; however, the differences among stages were not statistically significant. In addition, within the CKD group, TMAO concentrations were significantly higher in non-survivors than in survivors at the six-month follow-up (p = 0.0142). This pilot study highlights the potential of TMAO as a supportive renal biomarker for diagnostic and prognostic evaluation in canine CKD. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

15 pages, 3612 KiB  
Article
Postmortem Changes in mRNA Expression and Tissue Morphology in Brain and Femoral Muscle Tissues of Rat
by Sujin Choi, Minju Jung, Mingyoung Jeong, Sohyeong Kim, Dong Geon Lee, Kwangmin Park, Xianglan Xuan, Heechul Park, Dong Hyeok Kim, Jungho Kim, Min Ho Lee, Yoonjung Cho and Sunghyun Kim
Int. J. Mol. Sci. 2025, 26(15), 7059; https://doi.org/10.3390/ijms26157059 - 22 Jul 2025
Viewed by 208
Abstract
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s [...] Read more.
The postmortem interval (PMI), defined as the time elapsed between death and the discovery or examination of the body, is a crucial parameter in forensic science for estimating the time of death. There are many ways to measure the PMI, such as Henssge’s nomogram, which uses rectal temperature measurement; livor mortis; rigor mortis; and forensic entomology. However, these methods are usually affected by various conditions in the surrounding environment. The purpose of the present study was to compare molecular genetics and histological changes in the brain and skeletal muscle tissues of SD rats over increasing periods of time after death. For the PMIs, we considered 0 h, 6 h, 12 h, 24 h, 36 h, 48 h, 4 days, 6 days, 8 days, 10 days, 14 days, and 21 days and compared them at 4 °C and 26 °C. Hematoxylin and Eosin (H&E) staining was performed to observe tissue changes. Morphological tissue changes were observed in cells for up to 21 days at 4 °C, and cell destruction was visually confirmed after 14 days at 26 °C. Total RNA (tRNA) was isolated from each tissue sample, and complementary DNA (cDNA) was synthesized. A reverse transcription quantitative PCR (RT-qPCR) SYBR Green assay targeting three types of housekeeping genes, including Gapdh, Sort1, B2m, and 5S rRNA, was performed. The results showed that Gapdh and 5S rRNA were highly stable and could be better RNA targets for estimating the PMI in brain and skeletal muscle tissues. Conversely, Sort1 and B2m showed poor stability and low expression levels. In conclusion, these molecular biomarkers could be used as auxiliary indicators of the PMI in human, depending on the stability of the marker. Full article
(This article belongs to the Special Issue Advances in Molecular Forensic Pathology and Toxicology: An Update)
Show Figures

Figure 1

17 pages, 657 KiB  
Article
Toward Sustainable Mental Health: Development and Validation of the Brief Anxiety Scale for Climate Change (BACC) in South Korea
by Hyunjin Kim, Sooyun Jung, Boyoung Kang, Yongjun Lee, Hye-Young Jin and Kee-Hong Choi
Sustainability 2025, 17(15), 6671; https://doi.org/10.3390/su17156671 - 22 Jul 2025
Viewed by 375
Abstract
Climate change disrupts lives globally and poses significant challenges to mental health. Although several scales assess climate anxiety, many either conflate symptoms with coping responses or fail to adequately capture the core symptomatology of anxiety. Hence, this study aimed to develop and validate [...] Read more.
Climate change disrupts lives globally and poses significant challenges to mental health. Although several scales assess climate anxiety, many either conflate symptoms with coping responses or fail to adequately capture the core symptomatology of anxiety. Hence, this study aimed to develop and validate the Brief Anxiety Scale for Climate Change (BACC), a self-report measure designed to assess symptoms of climate anxiety. A preliminary pool of 21 items was generated based on the diagnostic criteria for generalized anxiety disorder and climate-related stress. Study 1 (n = 300) explored the factor structure via an exploratory factor analysis while Study 2 (n = 400) independently validated the structure via a confirmatory factor analysis (CFA). Analyses of the internal consistency, content validity, and discriminant validity helped refine the scale to a final 13-item version with two factors: cognitive and functional impairment. The CFA results indicated that all the fit indices met the recommended thresholds, and the final version demonstrated excellent internal consistency (Cronbach’s α = 0.92). Additionally, latent correlations revealed that climate anxiety was moderately associated with generalized anxiety and depression. The BACC was developed to identify individuals in the community who experience climate anxiety beyond an adaptive level, thereby promoting sustainable mental health in the context of climate change. These findings suggest that the BACC is a promising tool for assessing climate anxiety. With better identification, mental health professionals, community practitioners, and policymakers can utilize the scale to develop climate-sensitive public health programs and tailored intervention strategies. Full article
Show Figures

Figure 1

26 pages, 6375 KiB  
Article
Photoprotective Effects of Quercetin and Hesperidin in Polymorphous Light Eruption: A Comparative Study with Alpha-Glucosylrutin
by Yoon-Seo Choi, Sang-Hoon Park, Inhee Jung, Eun-Ju Park, Wonki Hong, Jin-Hee Shin, Won-Sang Seo and Jongsung Lee
Curr. Issues Mol. Biol. 2025, 47(7), 567; https://doi.org/10.3390/cimb47070567 - 19 Jul 2025
Viewed by 528
Abstract
Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification [...] Read more.
Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification as a potential skin sensitizer and aquatic toxin raise safety and environmental concerns. These limitations underscore the need for safer, naturally derived alternatives. In this study, we investigated the comparative efficacy of quercetin (QC) and hesperidin (HPN)—two plant-based flavonoids—against AGR in in vitro and ex vivo models of sun-induced skin damage. An optimized QC:HPN 8:1 (w/w) complex significantly restored antioxidant enzyme activities (SOD: 4.11 ± 0.32 mU/mg; CAT: 1.88 ± 0.04 mU/mg) and suppressed inflammatory cytokine production (IL-6: 155.95 ± 3.17 pg/mL; TNF-α: 62.34 ± 0.72 pg/mL) more effectively than AGR. β-hexosaminidase secretion, a marker of allergic response, was reduced to 99.02 ± 1.45% with QC:HPN 8:1, compared to 121.33 ± 1.15% with AGR. QC alone exhibited dose-dependent cytotoxicity at ≥10 μg/mL, whereas HPN maintained >94% cell viability at all tested concentrations. These findings highlight the QC:HPN 8:1 complex as a safe, natural, and effective alternative to synthetic AGR for preventing and managing PLE and UV-induced dermal inflammation. Further research should focus on clinical validation and formulation development for topical use. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 3rd Edition)
Show Figures

Figure 1

Back to TopTop