Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Authors = Boris V. Malozyomov ORCID = 0000-0001-8686-9556

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 3959 KiB  
Article
Battery Charging Simulation of a Passenger Electric Vehicle from a Traction Voltage Inverter with an Integrated Charger
by Evgeniy V. Khekert, Boris V. Malozyomov, Roman V. Klyuev, Nikita V. Martyushev, Vladimir Yu. Konyukhov, Vladislav V. Kukartsev, Oleslav A. Antamoshkin and Ilya S. Remezov
World Electr. Veh. J. 2025, 16(7), 391; https://doi.org/10.3390/wevj16070391 - 13 Jul 2025
Viewed by 286
Abstract
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and [...] Read more.
This paper presents the results of the mathematical modeling and experimental studies of charging a traction lithium-ion battery of a passenger electric car using an integrated charger based on a traction voltage inverter. An original three-stage charging algorithm (3PT/PN) has been developed and implemented, which provides a sequential decrease in the charging current when the specified voltage and temperature levels of the battery module are reached. As part of this study, a comprehensive mathematical model has been created that takes into account the features of the power circuit, control algorithms, thermal effects and characteristics of the storage battery. The model has been successfully verified based on the experimental data obtained when charging the battery module in real conditions. The maximum error of voltage modeling has been 0.71%; that of current has not exceeded 1%. The experiments show the achievement of a realized capacity of 8.9 Ah and an integral efficiency of 85.5%, while the temperature regime remains within safe limits. The proposed approach provides a high charge rate, stability of the thermal state of the battery and a long service life. The results can be used to optimize the charging infrastructure of electric vehicles and to develop intelligent battery module management systems. Full article
Show Figures

Figure 1

26 pages, 3661 KiB  
Article
Mathematical Model for the Study of Energy Storage Cycling in Electric Rail Transport
by Boris V. Malozyomov, Nikita V. Martyushev, Vladimir Yu. Konyukhov, Olga I. Matienko, Vladislav V. Kukartsev, Oleslav A. Antamoshkin and Yulia I. Karlina
World Electr. Veh. J. 2025, 16(7), 357; https://doi.org/10.3390/wevj16070357 - 27 Jun 2025
Viewed by 388
Abstract
The rapid development of electric transport necessitates efficient energy storage and redistribution in traction systems. A key challenge is the utilization of regenerative braking energy, which is often dissipated in resistors due to network saturation and limited consumption capacity. The paper addresses the [...] Read more.
The rapid development of electric transport necessitates efficient energy storage and redistribution in traction systems. A key challenge is the utilization of regenerative braking energy, which is often dissipated in resistors due to network saturation and limited consumption capacity. The paper addresses the problem of inefficient energy utilization in electric rail vehicles due to the absence of effective energy recovery mechanisms. A specific challenge arises when managing energy recuperated during regenerative braking, which is typically lost if not immediately reused. This study proposes the integration of on-board energy storage systems (ESS) based on supercapacitor technology to temporarily store excess braking energy. A mathematical model of a traction drive with a DC motor and supercapacitor-based ESS is developed, accounting for variable load profiles and typical urban driving cycles. Simulation results demonstrate potential energy savings of up to 30%, validating the feasibility of the proposed solution. The model also enables system-level analysis for optimal ESS sizing and placement in electric rail vehicles. Full article
(This article belongs to the Special Issue Battery Management System in Electric and Hybrid Vehicles)
Show Figures

Figure 1

40 pages, 10696 KiB  
Article
Mathematical Modeling of Signals for Weight Control of Vehicles Using Seismic Sensors
by Nikita V. Martyushev, Boris V. Malozyomov, Anton Y. Demin, Alexander V. Pogrebnoy, Egor A. Efremenkov, Denis V. Valuev and Aleksandr E. Boltrushevich
Mathematics 2025, 13(13), 2083; https://doi.org/10.3390/math13132083 - 24 Jun 2025
Viewed by 352
Abstract
The article presents a new method of passive dynamic weighing of vehicles based on the registration of seismic signals that occur when wheels pass through strips specially applied to the road surface. Signal processing is carried out using spectral methods, including fast Fourier [...] Read more.
The article presents a new method of passive dynamic weighing of vehicles based on the registration of seismic signals that occur when wheels pass through strips specially applied to the road surface. Signal processing is carried out using spectral methods, including fast Fourier transform, consistent filtering, and regularization methods for solving inverse problems. Special attention is paid to the use of linear-frequency-modulated signals, which make it possible to distinguish the responses of individual axes even when superimposed. Field tests were carried out on a real section of the road, during which signals from vehicles of various classes were recorded using eight geophones. The average error in determining the speed of 1.2 km/h and the weight of 8.7% was experimentally achieved, while the correct determination of the number of axles was 96.5%. The results confirm the high accuracy and sustainability of the proposed approach with minimal implementation costs. It is shown that this system can be scaled up for use in intelligent transport systems and applied in real traffic conditions without the need to intervene in the design of the roadway. Full article
Show Figures

Figure 1

26 pages, 1398 KiB  
Article
Improving the Reliability of Current Collectors in Electric Vehicles
by Boris V. Malozyomov, Nikita V. Martyushev, Anton Y. Demin, Alexander V. Pogrebnoy, Egor A. Efremenkov, Denis V. Valuev and Aleksandr E. Boltrushevich
Mathematics 2025, 13(12), 2022; https://doi.org/10.3390/math13122022 - 19 Jun 2025
Cited by 1 | Viewed by 679
Abstract
This article presents a mathematically grounded approach to increasing the operational reliability of current collectors in electric transport systems by ensuring a constant contact force between the collector shoe and the power rail. The core objective is achieved through the development and analysis [...] Read more.
This article presents a mathematically grounded approach to increasing the operational reliability of current collectors in electric transport systems by ensuring a constant contact force between the collector shoe and the power rail. The core objective is achieved through the development and analysis of a mechanical system incorporating spring and cam elements, which is specifically designed to provide a nearly invariant contact pressure under varying operating conditions. A set of equilibrium equations was derived to determine the stiffness ratios of the springs and the geometric conditions under which the contact force remains constant despite wear or displacement. Additionally, the paper introduces a method for synthesizing the cam profile that compensates for nonlinear spring deformation, ensuring force constancy over a wide range of movement. The analytical results were validated through parametric simulations, which assessed the influence of wear depth, rail inclination, and external vibrations on the system’s force output. These simulations, executed within a numerical framework using scientific computing tools, demonstrated that the deviation of the contact force does not exceed a few percent under typical disturbances. Experimental verification further confirmed the theoretical predictions. The study exemplifies the effective use of mathematical modeling, nonlinear mechanics, and numerical methods in the design of energy transmission components for transport applications, contributing to the development of robust and maintainable systems. Full article
Show Figures

Figure 1

24 pages, 4000 KiB  
Article
Modeling the Reliability of an Electric Car Battery While Changing Its Charging and Discharge Characteristics
by Nikita V. Martyushev, Boris V. Malozyomov, Anton Y. Demin, Alexander V. Pogrebnoy, Egor A. Efremenkov, Denis V. Valuev and Aleksandr E. Boltrushevich
Mathematics 2025, 13(11), 1832; https://doi.org/10.3390/math13111832 - 30 May 2025
Cited by 2 | Viewed by 657
Abstract
The reliable operation of current collectors is the most important factor in the efficiency and service life of electric vehicles. This article presents a study devoted to modeling the impact of operating modes on the reliability and durability of the accumulator battery of [...] Read more.
The reliable operation of current collectors is the most important factor in the efficiency and service life of electric vehicles. This article presents a study devoted to modeling the impact of operating modes on the reliability and durability of the accumulator battery of an electric bus. The purpose of this study is to determine the optimal modes of operation of the battery, which provide maximum service life while maintaining the operational efficiency of the vehicle. The developed simulation model considers the relationship between the thermal and electrical characteristics of the battery, as well as the process of its aging under the influence of various factors, including temperature, depth of discharge and charging/discharging modes. The work provides an assessment of the impact of various operating scenarios, including the charging modes typical of urban routes, on the loss of battery capacity. Using this model, it was established and experimentally confirmed that the greatest decrease in battery life occurs at a high level of battery charge. The best operating conditions range from 10 to 60%. The charge–discharge current should not exceed the nominal current, since an increase in the current level to 2C leads to a decrease in the resource by 30%, and an increase of up to 4C results in a decrease of 47%. The proposed model allow for the determination of the optimal ranges of the state of charge and temperature modes of battery operation, which ensure maximum service life while maintaining the efficiency of the electric bus on the specified routes. Full article
(This article belongs to the Special Issue Mathematical Models for Fault Detection and Diagnosis)
Show Figures

Figure 1

21 pages, 3679 KiB  
Article
Simulation Modeling of Energy Efficiency of Electric Dump Truck Use Depending on the Operating Cycle
by Aleksey F. Pryalukhin, Boris V. Malozyomov, Nikita V. Martyushev, Yuliia V. Daus, Vladimir Y. Konyukhov, Tatiana A. Oparina and Ruslan G. Dubrovin
World Electr. Veh. J. 2025, 16(4), 217; https://doi.org/10.3390/wevj16040217 - 5 Apr 2025
Cited by 4 | Viewed by 797
Abstract
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are [...] Read more.
Open-pit mining involves the use of vehicles with high load capacity and satisfactory mobility. As experience shows, these requirements are fully met by pneumatic wheeled dump trucks, the traction drives of which can be made using thermal or electric machines. The latter are preferable due to their environmental friendliness. Unlike dump trucks with thermal engines, which require fuel to be injected into them, electric trucks can be powered by various options of a power supply: centralized, autonomous, and combined. This paper highlights the advantages and disadvantages of different power supply systems depending on their schematic solutions and the quarry parameters for all the variants of the power supply of the dumper. Each quantitative indicator of each factor was changed under conditions consistent with the others. The steepness of the road elevation in the quarry and its length were the factors under study. The studies conducted show that the energy consumption for dump truck movement for all variants of a power supply practically does not change. Another group of factors consisted of electric energy sources, which were accumulator batteries and double electric layer capacitors. The analysis of energy efficiency and the regenerative braking system reveals low efficiency of regeneration when lifting the load from the quarry. In the process of lifting from the lower horizons of the quarry to the dump and back, kinetic energy is converted into heat, reducing the efficiency of regeneration considering the technological cycle of works. Taking these circumstances into account, removing the regenerative braking systems of open-pit electric dump trucks hauling soil or solid minerals from an open pit upwards seems to be economically feasible. Eliminating the regenerative braking system will simplify the design, reduce the cost of a dump truck, and free up usable volume effectively utilized to increase the capacity of the battery packs, allowing for longer run times without recharging and improving overall system efficiency. The problem of considering the length of the path for energy consumption per given gradient of the motion profile was solved. Full article
Show Figures

Figure 1

16 pages, 2342 KiB  
Article
Combined Power Generating Complex and Energy Storage System
by Rollan Nussipali, Nikita V. Martyushev, Boris V. Malozyomov, Vladimir Yu. Konyukhov, Tatiana A. Oparina, Victoria V. Romanova and Roman V. Kononenko
Electricity 2024, 5(4), 931-946; https://doi.org/10.3390/electricity5040047 - 21 Nov 2024
Cited by 6 | Viewed by 988
Abstract
Combining wind and hydropower facilities makes it possible to solve the problems caused by power supply shortages in areas that are remote from the central energy system. Hydropower plants and highly manoeuvrable hydroelectric units successfully compensate for the uneven power outputs from wind [...] Read more.
Combining wind and hydropower facilities makes it possible to solve the problems caused by power supply shortages in areas that are remote from the central energy system. Hydropower plants and highly manoeuvrable hydroelectric units successfully compensate for the uneven power outputs from wind power plants, and the limitations associated with them are significantly reduced when they are integrated into the regional energy system. Such an integration contributes to increasing the efficiency of renewable energy sources, which in turn reduces our dependence on fossil resources and decreases their harmful impact on the environment, increasing the stability of the power supply to consumers. The results of optimisation calculations show that a consumer load security of 95% allows the set capacity of RESs to be used in the energy complex up to 700 MW. It is shown here that the joint operation of HPPs and WPPs as part of a power complex and hydraulic energy storage allows for the creation of a stable power supply system that can operate even in conditions of variable wind force or uneven water flow. The conclusions obtained allow us to say that the combination of hydro- and wind power facilities makes it possible to solve the problem of power supply deficits in the regions of Kazakhstan that are remote from the central power station. At the same time, hydroelectric power plants and highly manoeuvrable hydroelectric units successfully compensate for the uneven power output from wind power plants and significantly reduce the limitations associated with them during their integration into the regional energy system. Full article
(This article belongs to the Special Issue Recent Advances in Power and Smart Grids)
Show Figures

Figure 1

25 pages, 4772 KiB  
Article
Modelling of Reliability Indicators of a Mining Plant
by Boris V. Malozyomov, Nikita V. Martyushev, Nikita V. Babyr, Alexander V. Pogrebnoy, Egor A. Efremenkov, Denis V. Valuev and Aleksandr E. Boltrushevich
Mathematics 2024, 12(18), 2842; https://doi.org/10.3390/math12182842 - 12 Sep 2024
Cited by 25 | Viewed by 1776
Abstract
The evaluation and prediction of reliability and testability of mining machinery and equipment are crucial, as advancements in mining technology have increased the importance of ensuring the safety of both the technological process and human life. This study focuses on developing a reliability [...] Read more.
The evaluation and prediction of reliability and testability of mining machinery and equipment are crucial, as advancements in mining technology have increased the importance of ensuring the safety of both the technological process and human life. This study focuses on developing a reliability model to analyze the controllability of mining equipment. The model, which examines the reliability of a mine cargo-passenger hoist, utilizes statistical methods to assess failures and diagnostic controlled parameters. It is represented as a transition graph and is supported by a system of equations. This model enables the estimation of the reliability of equipment components and the equipment as a whole through a diagnostic system designed for monitoring and controlling mining equipment. A mathematical and logical model is proposed to calculate availability and downtime coefficients for different structures within the mining equipment system. This analysis considers the probability of failure-free operation of the lifting unit based on the structural scheme, with additional redundancy for elements with lower reliability. The availability factor of the equipment for monitoring and controlling the mine hoisting plant is studied for various placements of diagnostic systems. Additionally, a logistic concept is introduced for organizing preventive maintenance systems and reducing equipment recovery time by optimizing spare parts, integrating them into strategies aimed at enhancing the reliability of mine hoisting plants. Full article
Show Figures

Figure 1

22 pages, 5467 KiB  
Article
Improvement of Operational Reliability of Units and Elements of Dump Trucks Taking into Account the Least Reliable Elements of the System
by Aleksey F. Pryalukhin, Nikita V. Martyushev, Boris V. Malozyomov, Roman V. Klyuev, Olga A. Filina, Vladimir Yu. Konyukhov and Artur A. Makarov
World Electr. Veh. J. 2024, 15(8), 365; https://doi.org/10.3390/wevj15080365 - 13 Aug 2024
Cited by 22 | Viewed by 2001
Abstract
The present work is devoted to the analysis of the most important reliability indicators of components of electrical devices of mining dump trucks, and analytical methods of their evaluation are proposed. A mathematical model for calculating the reliability of electrical devices integrated into [...] Read more.
The present work is devoted to the analysis of the most important reliability indicators of components of electrical devices of mining dump trucks, and analytical methods of their evaluation are proposed. A mathematical model for calculating the reliability of electrical devices integrated into the electrical systems of quarry dump trucks is presented. The model takes into account various loads arising in the process of operation and their influence on reliability reduction. Optimisation of maintenance and repair schedules of electrical equipment has revealed problems for research. One of them is the classification of electrical equipment by similar residual life, which allows the formation of effective repair and maintenance cycles. The analysis of statistical data on damages revealed the regularities of their occurrence, which is an important factor in assessing the reliability of electrical equipment in mining production. For quantitative assessment of reliability, it is proposed to use the parameter of the average expected operating time per failure. This parameter characterises the relative reliability of electrical equipment and is a determining factor of its reliability. The developed mathematical model of equipment failures with differentiation of maintained equipment by repeated service life allows flexible schedules of maintenance and repair to be created. The realisation of such cycles makes it possible to move from planned repairs to the system of repair according to the actual resource of the equipment. Full article
(This article belongs to the Special Issue Electric Vehicle Networking and Traffic Control)
Show Figures

Figure 1

26 pages, 1785 KiB  
Article
Development of a Mathematical Model of Operation Reliability of Mine Hoisting Plants
by Pavel V. Shishkin, Boris V. Malozyomov, Nikita V. Martyushev, Svetlana N. Sorokova, Egor A. Efremenkov, Denis V. Valuev and Mengxu Qi
Mathematics 2024, 12(12), 1843; https://doi.org/10.3390/math12121843 - 13 Jun 2024
Cited by 11 | Viewed by 1336
Abstract
The work analyzes the performance assurance of mine hoisting machines, including the problem of the quality of performance of the functions. The quality of functioning allows evaluation of a set of properties of the process of lifting loads, designed to meet the given [...] Read more.
The work analyzes the performance assurance of mine hoisting machines, including the problem of the quality of performance of the functions. The quality of functioning allows evaluation of a set of properties of the process of lifting loads, designed to meet the given requirements in accordance with the purpose and evaluated performance indicators. In this case, the quality of the function depends not only on the elements that worked properly or failed during system functioning but also on the moments involving certain changes in the states of the system. The considered system of power supply of mine hoisting installations is rather complex with respect to reliability. The proposed approach allows this rather complex system to lead in terms of the form of a serial connection of elements, allowing for determining the influence of the functioning of its subsystems and electrical equipment on the technological process of cargo lifting in a coal mine. The presented mathematical concept of increasing the reliability and failure-free operation of mine hoisting plants with the help of the developed mathematical model of the mine hoisting plant allowed studying the reliability indicators of the hoisting plant operation and reserving the equipment most effectively to increase reliability. The determination of coupling coefficients in this study made it possible to analyze the impact of the reliability of electrical equipment and power supply systems on the operation of technological machines to improve the reliability of mining equipment and the efficiency of technical systems of mining equipment. Full article
Show Figures

Figure 1

20 pages, 3389 KiB  
Article
Mathematical Logic Model for Analysing the Controllability of Mining Equipment
by Pavel V. Shishkin, Boris V. Malozyomov, Nikita V. Martyushev, Svetlana N. Sorokova, Egor A. Efremenkov, Denis V. Valuev and Mengxu Qi
Mathematics 2024, 12(11), 1660; https://doi.org/10.3390/math12111660 - 26 May 2024
Cited by 12 | Viewed by 1329
Abstract
The issues of the evaluation and prediction of the reliability and testability of mining machinery and equipment are becoming particularly relevant, since the safety of technological processes and human life is reaching a new level of realisation due to changes in mining technology. [...] Read more.
The issues of the evaluation and prediction of the reliability and testability of mining machinery and equipment are becoming particularly relevant, since the safety of technological processes and human life is reaching a new level of realisation due to changes in mining technology. The work is devoted to the development of a logical model for analysing the controllability of mining equipment. The paper presents a model of reliability of the operation of mining equipment on the example of a mine load and passenger hoist. This generalised model is made in the form of a graph of transitions and supplemented with a system of equations. The model allows for the estimation of the reliability of equipment elements and equipment as a whole. A mathematical and logical model for the calculation of the availability and downtime coefficients of various designs of mining equipment systems is proposed. This model became the basis for the methods to calculate the optimal values of diagnostic depth. At these calculated values, the maximum value of availability factor will be obtained. In this paper, an analytical study was carried out and dependences of the readiness factor of parameters of the investigated system such as the intensity of control of technical systems, intensity of failures, etc., were constructed. The paper proposes a mathematical model to assess the reliability of mine hoisting plants through its integration into the method of improving the reliability of mine hoisting plants. Full article
Show Figures

Figure 1

17 pages, 4747 KiB  
Article
Reliability Study of Metal-Oxide Semiconductors in Integrated Circuits
by Boris V. Malozyomov, Nikita V. Martyushev, Natalia Nikolaevna Bryukhanova, Viktor V. Kondratiev, Roman V. Kononenko, Pavel P. Pavlov, Victoria V. Romanova and Yuliya I. Karlina
Micromachines 2024, 15(5), 561; https://doi.org/10.3390/mi15050561 - 24 Apr 2024
Cited by 9 | Viewed by 1677
Abstract
This paper is devoted to the study of CMOS IC parameter degradation during reliability testing. The paper presents a review of literature data on the issue of the reliability of semiconductor devices and integrated circuits and the types of failures leading to the [...] Read more.
This paper is devoted to the study of CMOS IC parameter degradation during reliability testing. The paper presents a review of literature data on the issue of the reliability of semiconductor devices and integrated circuits and the types of failures leading to the degradation of IC parameters. It describes the tests carried out on the reliability of controlled parameters of integrated circuit TPS54332, such as quiescent current, quiescent current in standby mode, resistance of the open key, and instability of the set output voltage in the whole range of input voltages and in the whole range of load currents. The calculated values of activation energies and acceleration coefficients for different test temperature regimes are given. As a result of the work done, sample rejection tests have been carried out on the TPS54332 IC under study. Experimental fail-safe tests were carried out, with subsequent analysis of the chip samples by the controlled parameter quiescent current. On the basis of the obtained experimental values, the values of activation energy and acceleration coefficient at different temperature regimes were calculated. The dependencies of activation energy and acceleration coefficient on temperature were plotted, which show that activation energy linearly increases with increasing temperature, while the acceleration coefficient, on the contrary, decreases. It was also found that the value of the calculated activation energy of the chip is 0.1 eV less than the standard value of the activation energy. Full article
Show Figures

Figure 1

32 pages, 13207 KiB  
Article
Mathematical Modelling of Traction Equipment Parameters of Electric Cargo Trucks
by Boris V. Malozyomov, Nikita V. Martyushev, Svetlana N. Sorokova, Egor A. Efremenkov, Denis V. Valuev and Mengxu Qi
Mathematics 2024, 12(4), 577; https://doi.org/10.3390/math12040577 - 14 Feb 2024
Cited by 18 | Viewed by 1976
Abstract
Electric vehicles are one of the most innovative and promising areas of the automotive industry. The efficiency of traction equipment is an important factor in the operation of an electric vehicle. In electric vehicles, the energy stored in the battery is converted into [...] Read more.
Electric vehicles are one of the most innovative and promising areas of the automotive industry. The efficiency of traction equipment is an important factor in the operation of an electric vehicle. In electric vehicles, the energy stored in the battery is converted into mechanical energy to drive the vehicle. The higher the efficiency of the battery, the less energy is lost in the conversion process, which improves the overall energy efficiency of the electric vehicle. Determining the performance characteristics of the traction battery of an electric vehicle plays an important role in the selection of the vehicle and its future operation. Using mathematical modelling, it is shown that battery capacity, charging rate, durability and efficiency are essential to ensure the comfortable and efficient operation of an electric vehicle throughout its lifetime. A mathematical model of an electric truck including a traction battery has been developed. It is shown that, with the help of the developed mathematical model, it is possible to calculate the load parameters of the battery in standardised driving cycles. The data verification is carried out by comparing the data obtained during standardised driving with the results of mathematical modelling. Full article
(This article belongs to the Special Issue Applied Mathematics and Intelligent Control in Electrical Engineering)
Show Figures

Figure 1

22 pages, 12650 KiB  
Article
Determination of the Performance Characteristics of a Traction Battery in an Electric Vehicle
by Boris V. Malozyomov, Nikita V. Martyushev, Vladislav V. Kukartsev, Vladimir Yu. Konyukhov, Tatiana A. Oparina, Nadezhda S. Sevryugina, Valeriy E. Gozbenko and Viktor V. Kondratiev
World Electr. Veh. J. 2024, 15(2), 64; https://doi.org/10.3390/wevj15020064 - 12 Feb 2024
Cited by 60 | Viewed by 4111
Abstract
Electric vehicles are the most innovative and promising area of the automotive industry. The efficiency of a traction battery is an important factor in the performance of an electric vehicle. This paper presents a mathematical model of an electric truck, including modules for [...] Read more.
Electric vehicles are the most innovative and promising area of the automotive industry. The efficiency of a traction battery is an important factor in the performance of an electric vehicle. This paper presents a mathematical model of an electric truck, including modules for the traction battery to determine the depth of battery discharge during the operation of the electric truck, a traction electric system for the electric truck and a system for calculating traction forces on the shaft in electric motors. As a result of the modelling, the charging and discharging currents of an accumulator battery in a real cycle of movement in peak and nominal modes of operation in electric motors and at different voltages of the accumulator battery are determined. A functional scheme of a generalized model of the electric vehicle traction electrical equipment system is developed. An experimental battery charge degree, torques of asynchronous electric motors, temperature of electric motors and inverters, battery voltage and the speed of electric motors have been measured and analysed. The developed complex mathematical model of an electric vehicle including a traction battery, two inverters and two asynchronous electric motors integrated into an electric portal bridge allowed us to obtain and study the load parameters of the battery in real driving cycles. Data were verified by comparing simulation results with the data obtained during driving. Full article
Show Figures

Figure 1

17 pages, 1883 KiB  
Article
Analysis of a Predictive Mathematical Model of Weather Changes Based on Neural Networks
by Boris V. Malozyomov, Nikita V. Martyushev, Svetlana N. Sorokova, Egor A. Efremenkov, Denis V. Valuev and Mengxu Qi
Mathematics 2024, 12(3), 480; https://doi.org/10.3390/math12030480 - 2 Feb 2024
Cited by 31 | Viewed by 4706
Abstract
In this paper, we investigate mathematical models of meteorological forecasting based on the work of neural networks, which allow us to calculate presumptive meteorological parameters of the desired location on the basis of previous meteorological data. A new method of grouping neural networks [...] Read more.
In this paper, we investigate mathematical models of meteorological forecasting based on the work of neural networks, which allow us to calculate presumptive meteorological parameters of the desired location on the basis of previous meteorological data. A new method of grouping neural networks to obtain a more accurate output result is proposed. An algorithm is presented, based on which the most accurate meteorological forecast was obtained based on the results of the study. This algorithm can be used in a wide range of situations, such as obtaining data for the operation of equipment in a given location and studying meteorological parameters of the location. To build this model, we used data obtained from personal weather stations of the Weather Underground company and the US National Digital Forecast Database (NDFD). Also, a Google remote learning machine was used to compare the results with existing products on the market. The algorithm for building the forecast model covered several locations across the US in order to compare its performance in different weather zones. Different methods of training the machine to produce the most effective weather forecast result were also considered. Full article
Show Figures

Figure 1

Back to TopTop