Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Authors = Anna Grosser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 10090 KiB  
Article
Hybrid System of Fenton Process and Sequencing Batch Reactor for Coking Wastewater Treatment
by Anna Grosser, Ewa Neczaj, Dorota Krzemińska and Izabela Ratman-Kłosińska
Water 2025, 17(5), 751; https://doi.org/10.3390/w17050751 - 4 Mar 2025
Viewed by 875
Abstract
The aim of the work was to investigate the treatment efficiency of coking wastewater in a hybrid system combining the Fenton process with an SBR reactor. The Fenton reaction was optimised using variable reagent doses of 0.75, 1.0, 1.25 and 1.5 g/L for [...] Read more.
The aim of the work was to investigate the treatment efficiency of coking wastewater in a hybrid system combining the Fenton process with an SBR reactor. The Fenton reaction was optimised using variable reagent doses of 0.75, 1.0, 1.25 and 1.5 g/L for iron ions and 750, 1000, 1250, and 1500 mg/L for H2O2. The effects of Fe2+ and H2O2 concentration on BOD, COD, TOC, TN N-NH4+ and BOD/COD ratio were studied in detail to optimise the pretreatment performance. The selection of the most favourable parameters for the Fenton reaction was based on the frequency of occurrence of a different combination of the chemical reagents. The most beneficial doses were found to be 0.75 g/L of iron (II) ion and 1000 mg/L of hydrogen peroxide, at which the COD reduction rate was about 40% and a high increase in the BOD5/COD ratio from 0.1 to 0.31 was observed. Moreover, the obtained results showed that the efficiency of removing organic pollutants and nitrogen compounds was higher in the SBR reactor fed with pretreated wastewater. However, the relatively low efficiency of removing TKN (25%) and NH4+ (21%) indicates the presence of toxic substances in them that may inhibit the removal of nitrogen compounds. Full article
Show Figures

Figure 1

23 pages, 5015 KiB  
Article
Stimulating Methane Production from Poultry Manure Digest with Sewage Sludge and Organic Waste by Thermal Pretreatment and Adding Iron or Sodium Hydroxide
by Anna Jasińska, Anna Grosser, Erik Meers and Dagmara Piłyp
Energies 2024, 17(11), 2679; https://doi.org/10.3390/en17112679 - 31 May 2024
Cited by 1 | Viewed by 1324
Abstract
The European Union’s energy policy favors increasing the share of renewable energy in total energy production. In this context, the co-digestion of various waste streams seems an interesting option. This study aimed to determine the effect of selected pretreatment methods on the efficiency [...] Read more.
The European Union’s energy policy favors increasing the share of renewable energy in total energy production. In this context, the co-digestion of various waste streams seems an interesting option. This study aimed to determine the effect of selected pretreatment methods on the efficiency and kinetics of the co-digestion process of poultry manure with sewage sludge and organic waste. This research was carried out in four stages: (1) the selection of the third component of the co-digestion mixture; (2) the determination of the most favorable inoculum-to-substrate ratio for the co-digestion mixture; (3) the selection of the most favorable pretreatment parameters based on changes in volatile fatty acids, ammonium nitrogen, extracellular polymers substances (EPS) and non-purgeable organic carbon (NPOC); and (4) the evaluation of anaerobic co-digestion based on the result of the BMP tests and kinetic studies. All the pretreatment methods increased the degree of organic matter liquefaction as measured by the NPOC changes. Waste with a high fat content showed the highest methane potential. The addition of grease trap sludge to feedstock increased methane yield from 320 mL/g VSadd to 340 mL/g VSadd. An optimal inoculum-to-substrate ratio was 2. The pretreatment methods, especially the thermochemical one with NaOH, increased the liquefaction of organic matter and the methane yield, which increased from 340 mL/g VSadd to 501 mL/g VSadd (trial with 4.5 g/L NaoH). Full article
(This article belongs to the Special Issue New Trends in Biofuels and Bioenergy for Sustainable Development II)
Show Figures

Figure 1

30 pages, 4474 KiB  
Review
The Application of an Upflow Anaerobic Sludge Blanket Reactor in the Treatment of Brewery and Dairy Wastewater: A Critical Review
by German Smetana and Anna Grosser
Energies 2024, 17(6), 1504; https://doi.org/10.3390/en17061504 - 21 Mar 2024
Cited by 11 | Viewed by 3817
Abstract
Brewery (BW) and dairy (DW) wastewater are two types of agro-industrial wastewater that are generated in large amounts and, therefore, should be treated effectively and in an environmentally beneficial manner. Both these wastewater types are characterized by a high COD, BOD5, [...] Read more.
Brewery (BW) and dairy (DW) wastewater are two types of agro-industrial wastewater that are generated in large amounts and, therefore, should be treated effectively and in an environmentally beneficial manner. Both these wastewater types are characterized by a high COD, BOD5, and nutrient content, and conventional wastewater treatment methods such as an activated sludge process may prove to be inefficient due to the possibility of foaming, large biomass production, low activity at low temperatures, and risk of overloading the reactor with a load of organic pollutants. In the context of the described difficulties, anaerobic processes seem to be the best alternative. An interesting research area is the co-digestion of these wastewaters. However, this research direction, so far, has not been frequently reported. Given the gap in the current knowledge, this literature review aims to assess the possibility of BW and DW digestion in anaerobic reactors and provide up-to-date data on the post-treatment methods of effluent generated after the anaerobic digestion process. Despite numerous advantages, anaerobic treatment often requires post-effluent treatment to complete the treatment cycle. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

19 pages, 4682 KiB  
Article
Sewage Sludge-Derived Biochar and Its Potential for Removal of Ammonium Nitrogen and Phosphorus from Filtrate Generated during Dewatering of Digested Sludge
by Katarzyna Wystalska and Anna Grosser
Energies 2024, 17(6), 1310; https://doi.org/10.3390/en17061310 - 8 Mar 2024
Cited by 7 | Viewed by 2192
Abstract
Utilizing waste, such as sewage sludge, into biochar fits the circular economy concept. It maximizes the reuse and recycling of waste materials in the wastewater treatment plant. The experiments were conducted to assess: (1) the impact of the temperature on the properties of [...] Read more.
Utilizing waste, such as sewage sludge, into biochar fits the circular economy concept. It maximizes the reuse and recycling of waste materials in the wastewater treatment plant. The experiments were conducted to assess: (1) the impact of the temperature on the properties of biochar from sewage sludge (400 °C, 500 °C, 600 °C, 700 °C); (2) how the physical activation (CO2, hot water) or chemical modification using (MgCl2, KOH) could affect the removal of ammonia nitrogen and phosphorus from filtrate collected from sludge dewatering filter belts or synthetic solution, wherein the concentration of ammonium nitrogen and phosphorus were similar to the filtrate. Based on the Brunner–Emmett–Teller (BET) surface and the type and concentration of surface functional groups for the second stage, biochar was selected and produced at 500 °C. The modification of biochar had a statistically significant effect on removing nitrogen and phosphorus from the media. The best results were obtained for biochar modified with potassium hydroxide. For this trial, 15%/17% (filtrate/synthetic model solution) and 72%/86% nitrogen and phosphorus removal, respectively, were achieved. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

30 pages, 3487 KiB  
Review
Possibilities and Limitations of Anaerobic Co-Digestion of Animal Manure—A Critical Review
by Anna Jasińska, Anna Grosser and Erik Meers
Energies 2023, 16(9), 3885; https://doi.org/10.3390/en16093885 - 4 May 2023
Cited by 27 | Viewed by 5215
Abstract
Anaerobic digestion is a well-known and long-used biological method for stabilizing organic materials. Among the benefits of this process in waste management are the reduction of greenhouse gases, the production of alternative energy, and the acquisition of valuable digestate that can be used [...] Read more.
Anaerobic digestion is a well-known and long-used biological method for stabilizing organic materials. Among the benefits of this process in waste management are the reduction of greenhouse gases, the production of alternative energy, and the acquisition of valuable digestate that can be used in the form of biogas, thereby closing the cycle of elements in nature. For some materials, such as manure, which is heterogeneous in terms of morphology and chemical composition, digestion of a single substrate may not be very efficient. Therefore, more and more studies on the co-digestion process are appearing in the literature. This solution allows higher biogas production and the possibility of processing several wastes simultaneously. The prospect of the future effective application of anaerobic co-digestion depends on regulations, work regime, and access to raw materials. Therefore, there is a need to systematize the available knowledge and results, as well as to identify the possibilities and limitations of the discussed process, which is undertaken in this paper. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

17 pages, 3764 KiB  
Article
Transcriptomic Comparison of Human Peripartum and Dilated Cardiomyopathy Identifies Differences in Key Disease Pathways
by Jude Taylor, Anna C. Y. Yeung, Anthony Ashton, Alen Faiz, Victor Guryev, Bernard Fang, Sean Lal, Mark Grosser, Cristobal G. dos Remedios, Filip Braet, Craig S. McLachlan and Amy Li
J. Cardiovasc. Dev. Dis. 2023, 10(5), 188; https://doi.org/10.3390/jcdd10050188 - 23 Apr 2023
Cited by 5 | Viewed by 2603
Abstract
Peripartum cardiomyopathy (PPCM) is a rare form of acute onset heart failure that presents in otherwise healthy pregnant women around the time of delivery. While most of these women respond to early intervention, about 20% progress to end-stage heart failure that symptomatically resembles [...] Read more.
Peripartum cardiomyopathy (PPCM) is a rare form of acute onset heart failure that presents in otherwise healthy pregnant women around the time of delivery. While most of these women respond to early intervention, about 20% progress to end-stage heart failure that symptomatically resembles dilated cardiomyopathy (DCM). In this study, we examined two independent RNAseq datasets from the left ventricle of end-stage PPCM patients and compared gene expression profiles to female DCM and non-failing donors. Differential gene expression, enrichment analysis and cellular deconvolution were performed to identify key processes in disease pathology. PPCM and DCM display similar enrichment in metabolic pathways and extracellular matrix remodeling suggesting these are similar processes across end-stage systolic heart failure. Genes involved in golgi vesicles biogenesis and budding were enriched in PPCM left ventricles compared to healthy donors but were not found in DCM. Furthermore, changes in immune cell populations are evident in PPCM but to a lesser extent compared to DCM, where the latter is associated with pronounced pro-inflammatory and cytotoxic T cell activity. This study reveals several pathways that are common to end-stage heart failure but also identifies potential targets of disease that may be unique to PPCM and DCM. Full article
(This article belongs to the Special Issue Identifying Mechanisms and Patterns in Cardiovascular Disease)
Show Figures

Figure 1

17 pages, 5434 KiB  
Review
The Oxygenic Photogranules—Current Progress on the Technology and Perspectives in Wastewater Treatment: A Review
by German Smetana and Anna Grosser
Energies 2023, 16(1), 523; https://doi.org/10.3390/en16010523 - 3 Jan 2023
Cited by 11 | Viewed by 3437
Abstract
Wastewater generation is a worldwide problem, and its treatment is an important practice for maintaining public health and environmental protection. Oxygenic photogranules (OPGs) are a relatively novel type of biogranules that have the potential to substitute the conventional activated sludge (AS) process due [...] Read more.
Wastewater generation is a worldwide problem, and its treatment is an important practice for maintaining public health and environmental protection. Oxygenic photogranules (OPGs) are a relatively novel type of biogranules that have the potential to substitute the conventional activated sludge (AS) process due to the production of in situ oxygen, better physical properties such as settling velocity and density, as well as carbon and nutrient removal efficiencies. The formation of the granules is attributed to many factors, among which the most influential are light intensity, ammonium nitrogen concentration, and the presence of filamentous cyanobacteria that, along with heterotrophic microorganisms situated in the granule’s core, create a self-sustainable system that combines denitrification, carbon removal, and oxygen production. Hydrostatic and hydrodynamic cultivations are two ways that allow for obtaining OPGs. These two cultivation methods lead to the formation of various types of granules which differ in both structures as well as physical properties. This review article aims to aggregate the available literature information regarding the methods of cultivation of OPGs, their formation mechanisms, and factors that influence the cultivation as well as an overview of studies that were conducted thus far concerning this type of biogranules. Additionally, further research directions are proposed in the article. Full article
Show Figures

Figure 1

17 pages, 3506 KiB  
Article
Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective
by Ewa Neczaj, Anna Grosser, Anna Grobelak, Piotr Celary and Bal Ram Singh
Energies 2021, 14(21), 6953; https://doi.org/10.3390/en14216953 - 22 Oct 2021
Cited by 10 | Viewed by 2830
Abstract
Resource recovery from biodegradable waste is essential in order to reach the goals of zero circular economy waste generation and zero greenhouse gas emissions from the waste sector. Waste whose management is a real challenge is sewage sludge, mainly because of high concentrations [...] Read more.
Resource recovery from biodegradable waste is essential in order to reach the goals of zero circular economy waste generation and zero greenhouse gas emissions from the waste sector. Waste whose management is a real challenge is sewage sludge, mainly because of high concentrations of heavy metals. The aim of this study was to compare the effectiveness of material stabilization during aerobic stabilization of two feedstocks with sewage sludge obtained from different sources, namely, digestate from a municipal wastewater treatment plant and digestate from a co-digestion process. Moreover, the goal of the experiment was to assess the quality of compost in terms of remediation potential. The composting process was carried out for four different mixtures consisting of the mentioned digestates, municipal solid waste, and grass. A better composting efficiency with digestate from the co-digestion process was observed. In that case, a higher temperature in the thermophilic phase (>55 °C) and a higher organic matter loss ratio (60%) were obtained as compared to the process with digestate from wastewater treatment plant. Taking into account the fertilizing properties and the concentration of heavy metals, all obtained composts met the requirements set out in the Polish Regulation for organic fertilizers. Only the content of Helminth eggs in the composts produced with the digestate from the wastewater treatment plant was above the acceptable level. The research also proved that the produced composts can be used in the phytoremediation process of the degraded area. It was found that all composts caused a significant increase in fescue biomass. The highest yield was achieved for compost produced from a mixture with the addition of 30% sewage sludge from the co-digestion process. Full article
(This article belongs to the Special Issue Integrated Waste Management)
Show Figures

Figure 1

18 pages, 2442 KiB  
Article
Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes
by German Smetana, Ewa Neczaj and Anna Grosser
Energies 2021, 14(14), 4217; https://doi.org/10.3390/en14144217 - 13 Jul 2021
Cited by 3 | Viewed by 2166
Abstract
Sewage sludge (SS) generation and its management still pose a problem in many countries. Anaerobic co-digestion (AcD) of SS with grease trap sludge (GTS) and organic fraction of municipal sewage waste (OFMSW), which are two easily biodegradable substrates, may improve biogas production and [...] Read more.
Sewage sludge (SS) generation and its management still pose a problem in many countries. Anaerobic co-digestion (AcD) of SS with grease trap sludge (GTS) and organic fraction of municipal sewage waste (OFMSW), which are two easily biodegradable substrates, may improve biogas production and AcD kinetics. Algae biomass (AB) of the species Undaria pinnatifida can be the third co-digestion component that may also affect the AcD performance. The aim of the study was therefore to evaluate the performance of mesophilic and thermophilic SS batch AcD with OFMSW, GTS as well as AB through biochemical methane potential (BMP) assay in relation to cumulative specific biogas (YB) and methane yields (Ym). Three kinetic models were applied within the scope of the kinetic study. Results of the study showed that the mixture containing SS, GTS and AB brought the most noticeable improvements in Ym compared to other studied mixtures and in respect to standalone SS digestion, the improvement amounted to 88.37% at mesophilic temperature (260.83 ± 15.02 N mL CH4/g-VSadd and for standalone SS 138.47 ± 4.70 N mL CH4/g-VSadd) and 71.09%, respectively, at the thermophilic one (275.66 ± 4.11 N mL-CH4/g-VSadd and for SS standalone 161.13 ± 13.11 N mL-CH4/g-VSadd). Full article
(This article belongs to the Special Issue Energy and Matter Recovery from Organic Waste Processing and Reuse)
Show Figures

Figure 1

25 pages, 5643 KiB  
Article
The Diagnostic Journey of a Patient with Prader–Willi-Like Syndrome and a Unique Homozygous SNURF-SNRPN Variant; Bio-Molecular Analysis and Review of the Literature
by Karlijn Pellikaan, Geeske M. van Woerden, Lotte Kleinendorst, Anna G. W. Rosenberg, Bernhard Horsthemke, Christian Grosser, Laura J. C. M. van Zutven, Elisabeth F. C. van Rossum, Aart J. van der Lely, James L. Resnick, Hennie T. Brüggenwirth, Mieke M. van Haelst and Laura C. G. de Graaff
Genes 2021, 12(6), 875; https://doi.org/10.3390/genes12060875 - 7 Jun 2021
Cited by 5 | Viewed by 6323
Abstract
Prader–Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome [...] Read more.
Prader–Willi syndrome (PWS) is a rare genetic condition characterized by hypotonia, intellectual disability, and hypothalamic dysfunction, causing pituitary hormone deficiencies and hyperphagia, ultimately leading to obesity. PWS is most often caused by the loss of expression of a cluster of genes on chromosome 15q11.2-13. Patients with Prader–Willi-like syndrome (PWLS) display features of the PWS phenotype without a classical PWS genetic defect. We describe a 46-year-old patient with PWLS, including hypotonia, intellectual disability, hyperphagia, and pituitary hormone deficiencies. Routine genetic tests for PWS were normal, but a homozygous missense variant NM_003097.3(SNRPN):c.193C>T, p.(Arg65Trp) was identified. Single nucleotide polymorphism array showed several large regions of homozygosity, caused by high-grade consanguinity between the parents. Our functional analysis, the ‘Pipeline for Rapid in silico, in vivo, in vitro Screening of Mutations’ (PRiSM) screen, showed that overexpression of SNRPN-p.Arg65Trp had a dominant negative effect, strongly suggesting pathogenicity. However, it could not be confirmed that the variant was responsible for the phenotype of the patient. In conclusion, we present a unique homozygous missense variant in SNURF-SNRPN in a patient with PWLS. We describe the diagnostic trajectory of this patient and the possible contributors to her phenotype in light of the current literature on the genotype–phenotype relationship in PWS. Full article
(This article belongs to the Special Issue Novel Genetic causes of Pitutary Hormone Deficiency)
Show Figures

Graphical abstract

19 pages, 3947 KiB  
Article
Ultrasound-Assisted Treatment of Landfill Leachate in a Sequencing Batch Reactor
by Anna Grosser, Ewa Neczaj, Magdalena Madela and Piotr Celary
Water 2019, 11(3), 516; https://doi.org/10.3390/w11030516 - 12 Mar 2019
Cited by 24 | Viewed by 4723
Abstract
Purification of leachates is currently a big challenge due to their high variability in composition and amount. The complexity of the medium, namely leachates, makes new solutions highly sought after and finds the existing ones in need of optimization. The effects of ultrasound [...] Read more.
Purification of leachates is currently a big challenge due to their high variability in composition and amount. The complexity of the medium, namely leachates, makes new solutions highly sought after and finds the existing ones in need of optimization. The effects of ultrasound pretreatment (20 kHz, 12 µm) on biological treatment of landfill leachates in the form of processes carried out in two sequencing batch reactors were investigated. The experiment was divided into two stages. In the first stage, leachate was treated by an ultrasonic field at different sonication times (0.5, 1, 3, 5, 10 and 15 min). Next, leachates with and without conditioning were combined with municipal wastewater in the following ratios: 5, 10, 15 and 25% v/v. For optimal processing time (3 min), 16% removal of COD was achieved. In turn, the BOD5/COD ratio was 0.3, which is higher by approximately 270% than that of the non-conditioned sample. Further elongation of sonication time did not significantly affect both parameters. Also, pretreatment of leachate resulted in a maximum increase noted in the study of specific oxygen uptake rate and dehydrogenase activity of approximately 21 and 2 times compared to the non-conditioned sample. The implementation of a pretreatment step prior to the biological treatment was shown to result in higher pollutant removal efficiency. Depending on the share of leachates in the mixture, the removal enhancements of BOD, COD, and ammonium nitrogen for conditioned samples ranged from 6–48.5%, 4–48% and 11–42%, respectively. Furthermore, pretreatment of leachate allows for an increased (by up to 20%) share of leachate volume in the influent stream entering the reactor, while maintaining the quality of effluents in accordance with national regulation requirements. However, in scenarios without pretreatment, the leachate ratio cannot exceed 5% of the total wastewater due to poor quality of the effluents. The operational cost of ultrasound pretreatment of leachate was 22.58 €/(m3·g removed COD). Full article
(This article belongs to the Special Issue Insights on the Water–Energy–Food Nexus)
Show Figures

Figure 1

7 pages, 750 KiB  
Proceeding Paper
Circular Economy in Wastewater Treatment Plant–Challenges and Barriers
by Ewa Neczaj and Anna Grosser
Proceedings 2018, 2(11), 614; https://doi.org/10.3390/proceedings2110614 - 31 Jul 2018
Cited by 61 | Viewed by 10651
Abstract
The urban wastewater treatment plants can be an important part of circular sustainability due to integration of energy production and resource recovery during clean water production. Currently the main drivers for developing wastewater industry are global nutrient needs and water and energy recovery [...] Read more.
The urban wastewater treatment plants can be an important part of circular sustainability due to integration of energy production and resource recovery during clean water production. Currently the main drivers for developing wastewater industry are global nutrient needs and water and energy recovery from wastewater. The article presents current trends in wastewater treatment plants development based on Circular Economy assumptions, challenges and barriers which prevent the implementation of the CE and Smart Cities concept with WWTPs as an important player. WWTPs in the near future are to become “ecologically sustainable” technological systems and a very important nexus in SMART cities. Full article
(This article belongs to the Proceedings of EWaS3 2018)
Show Figures

Figure 1

12 pages, 544 KiB  
Proceeding Paper
Treatment of Landfill Leachate Using Ultrasound Assisted SBR Reactor
by Anna Grosser, Ewa Neczaj, Magdalena Madela and Piotr Celary
Proceedings 2018, 2(11), 648; https://doi.org/10.3390/proceedings2110648 - 30 Jul 2018
Cited by 3 | Viewed by 2021
Abstract
The article investigated the effects of ultrasound pretreatment on biological treatment of landfill leachate. Leachates with and without conditioning were combined with municipal wastewater at different ratios. The study showed that the implementation of a pretreatment step prior to biological treatment not only [...] Read more.
The article investigated the effects of ultrasound pretreatment on biological treatment of landfill leachate. Leachates with and without conditioning were combined with municipal wastewater at different ratios. The study showed that the implementation of a pretreatment step prior to biological treatment not only results in higher pollutant removal efficiency but may also allow for an increased leachate volume share in the influent stream entering the reactor by up to 20% (quality of effluents meets national regulation requirements) which in scenarios without pretreatment cannot exceed 5% due to poor quality of the effluents. Full article
(This article belongs to the Proceedings of EWaS3 2018)
Show Figures

Figure 1

Back to TopTop