Treatment of Landfill Leachate Using Ultrasound Assisted SBR Reactor †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Sample Analyses
3. Results and Discussion
3.1. First Stage
3.2. Second Stage—Biological Treatment
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Parameter | Unit | Leachate | Municipal Wastewater |
---|---|---|---|
pH | - | 8.1–8.5 | 6.5–7.9 |
alkalinity | mgCaCO3/L | 15,000–12,300 | |
TKN | mg/L | 820–1100 | 30–72 |
NH4+ | mg/L | 750–990 | 23–60 |
NO2− | mg/L | 25–67 | bdl |
NO3− | mg/L | 16–28 | 0.0–1.63 |
PO43−–P | mg/L | 11–26 | 3.5–4.2 |
P total | mg/L | 14.1–16.7 | 6.5–7.0 |
CODtot. | mgO2/L | 3600–4500 | 250–460 |
BOD5 | mgO2/L | 380–530 | 120–390 |
TSS | mg/L | 615–730 | 48–130 |
chloride | mg/L | 1350–3200 | 51–110 |
Sonication Time (min.) | ||||||||
---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 3.0 | 5.0 | 10.0 | 15.0 | ||
CODtot. | mgO2/L | 4650 ± 419 | 4426 ± 487 | 4231±508 | 3886 ± 311 | 3890 ± 195 | 3875 ± 271 | 3860 ± 301 |
CODsusp. | mgO2/L | 2075 ± 125c | 1848 ± 240ab | 1685 ± 152ab | 1470 ± 103a | 1475 ± 89a | 1460 ± 117a | 1487 ± 134a |
CODcol. | mgO2/L | 865 ± 87d | 715 ± 79cd | 617 ± 74bc | 404 ± 32a | 399 ± 20a | 397 ± 28a | 480 ± 38ab |
CODdis. | mgO2/L | 1710 ± 137 | 1863 ± 205 | 1930 ± 232 | 2012 ± 161 | 2016 ± 101 | 2018 ± 141 | 1893 ± 151 |
BOD5 | mgO2/L | 500 ± 45a | 691 ± 76a | 980 ± 118b | 1171 ± 94bc | 1172 ± 59bc | 1150 ± 81bc | 1225 ± 98c |
pH | - | 8.3 ± 0.08f | 8 ± 0.08e | 7.5 ± 0.08d | 6.6 ± 0.07c | 6.5 ± 0.07ab | 6.4 ± 0.06a | 6.5 ± 0.07ab |
BOD5/COD | - | 0.11 ± 0.01a | 0.16 ± 0.02a | 0.23 ± 0.03b | 0.30 ± 0.02c | 0.30 ± 0.02c | 0.30 ± 0.02c | 0.33 ± 0.03c |
Type of Pretreatment and/or +Additional Process | COD (mg/L) | BOD/COD | Kind of Reactor | Volume of Reactor (L) | Temp. | Addition of Leachate (% v/v) | Removal (%) | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|
BOD5 | COD | NH4+ | ||||||||
- | 1090 | 0.4 | SBR | - | 20 | 10 | 95 | - | - | [4] |
- | 10,750 | 0.59 | SCFB | 2 | - | 6.7 | - | 89 | - | [23] |
+PAC | SCFB | 6.7 | - | 88 | - | |||||
- | SCFB | 13.3 | - | 78 | - | |||||
+PAC | SCFB | 13.3 | - | 82 | - | |||||
- | CF | 3.6 settling tank, 2.5 aeration tank | 6.7 | - | 87 | - | ||||
+PAC | CF | 6.7 | - | 93 | - | |||||
- | CF | 13.3 | - | 81–89 | - | |||||
+PAC | CF | 13.3 | - | - | - | |||||
with 4000 mg/L FeSO4 and an anionic polyelectrolyte of type SF-380 before mixing with domestic wastewater | 37,024 | 0.42 | AS | 2 | 22 ± 2 | 2–10 | - | 82–87 | - | [24] |
- | 2431 | 0.21 | 5–20 | 16–74 | ||||||
Without air striping/with air striping | 2366 | 0.12 | SBR | 3 | - | 2.5 | - | 87/87 | 32.1/24 | [6] |
5 | 80/80 | 41.1/26.2 | ||||||||
10 | 63/63 | 54.6/35.5 | ||||||||
- | 10,250–16,250 | 0.33–0.45 | - | 2 | 25 | 50 | 30.3 | 37.1 | - | [7] |
air striping | 64.4 | 67.2 | 89.3 | |||||||
air striping | 4425–4860 1) | 0.1 | AS | 95 | 20 | 2 | - | 70 2) | 94 3) | [9] |
air striping | 5 | - | 60 2) | 50 3) | ||||||
- | SBR | 0.16 | SBR | 8 | 20 ± 1 | 1 | >90 | 90 | >95 | [25] |
2 | >90 | 80–90 | >95 | |||||||
5 | >90 | 65–85 | 70–90 | |||||||
10 | >90 | 60–70 | 60–85 | |||||||
influent | 4150 | 730.8 | - | - | - | - | - | - | - | [12] |
+air striping | - | - | - | - | 25 ± 2 | - | 5.5 | 21.1 | 96.6 | |
+Fenton | - | - | SBR | - | - | 15.3 | 60.8 | 97.4 | ||
+SBR | - | - | - | 8 | 254) | 82.8 | 83.1 | 97.9 | ||
coagulation | - | - | - | - | - | 84.5 | 93.3 | 98.3 |
Addition of Leachate (% v/v) | BOD5 (mg/L)/(% Removal) | COD (mg/L)/(% Removal) | TSS (mg/L)/(% Removal) | Total N (mg/L)/(%Removal) | Total P (mg/L)/(% Removal) | |||||
---|---|---|---|---|---|---|---|---|---|---|
SBR1 | SBR2 | SBR1 | SBR2 | SBR1 | SBR2 | SBR1 | SBR2 | SBR1 | SBR2 | |
0 | 2.55/99 | 2.55/99 | 71/80 | 71/80 | 0.89/99 | 0.89/99 | 5.4/82 | 5.4/82 | 0.47/93 | 0.47/93 |
5 | 5.3/98 | 5.3/95.5/98 | 96.01/77 | 83.5/80 | 5.9/95 | 1.18/99 | 20.2/71 | 13.9/80 | 0.8/88 | 0.8/89 |
10 | 22/92 | 5.5/98 | 165/72 | 129/78 | 14.7/90 | 4.4/97 | 34.968 | 22.9/79 | 1.5/79 | 1.1/87 |
15 | 31.4/89 | 14.25/95 | 227/70 | 166/78 | 33.5/81 | 8.8/95 | 59.4/60 | 37.1/75 | 1.9/75 | 1.5/83 |
20 | 59/80 | 17.7/94 | 383/65 | 274/75 | 61.7/70 | 22.6/89 | 90.2/52 | 56.4/70 | 2.8/65 | 1.8/80 |
25 | 82.3/73 | 24.4/92 | 449/65 | 333/74 | 84.6/64 | 50/80 | 111/51 | 72.8/68 | 3.1/63 | 2.3/75 |
30 | 110/65 | 34.7/89 | 585/60 | 395/73 | 106/60 | 58/78 | 147/45 | 101/62 | 3.3/62 | 2.5/75 |
35 | 137/58 | 78/76 | 791/52 | 495/70 | 117/60 | 76.2/74 | 169/45 | 111/62 | 3.46/62 | 2.7/74 |
40 | 194/42 | 101/70 | 1100/40 | 588/68 | 148/54 | 96.7/70 | 211/39 | 156/55 | 3.8/60 | 3/72 |
45 | 224/35 | 110/68 | 139,231 | 807/60 | 200/43 | 130/63 | 289/25 | 220/43 | 4/60 | 3.5/69 |
References
- Sewwandi, B.G.N.; Wijesekara, H.; Rajapaksha, A.U.; Mowjood, M.I.M.; Vithanage, M. Risk of soil and water pollution by heavy metals in landfill leachate. In Proceedings of the 12th Annual Conference of Thai Society of Agricultural Engineering, Chonburi, Thailand, 31 March–1 April 2011; Available online: https://www.researchgate.net/publication/265596878_Risk_of_Soil_and_Water_Pollution_by_Heavy_Metals_in_Landfill_Leachate (accessed on 9 January 2018).
- Grosser, A.; Jelonek, P.; Neczaj, E. Trends in the treatment of landfill leachate. In Interdisciplinary Problems in Engineering and Environmental Protection, 1st ed.; Wiśniewski, J., Kutyłowska, M., Trusz-Zdybek, A., Eds.; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2015; Volume 5, pp. 95–124. Available online: https://www.eko-dok.pl/2015/10.pdf (accessed on 9 January 2018). (In Polish)
- Torretta, V.; Ferronato, N.; Katsoyiannis, I.A.; Tolkou, A.K.; Airoldi, M. Novel and conventional technologies for landfill leachates treatment: A review. Sustainability 2016, 9, 9. [Google Scholar] [CrossRef]
- Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill leachate treatment: Review and opportunity. J. Hazard. Mater. 2008, 150, 468–493. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, B.K.; Kumar, M. Suitability of Microwave and Microwave-coupled Systems for Landfill Leachate Treatment: An Overview. J. Environ. Chem. Eng. 2017, 5, 6165–6178. [Google Scholar] [CrossRef]
- Yuan, Q.; Jia, H.; Poveda, M. Study on the effect of landfill leachate on nutrient removal from municipal wastewater. J. Environ. Sci. 2016, 43, 153–158. [Google Scholar] [CrossRef] [PubMed]
- El-Gohary, F.A.; Kamel, G. Characterization and biological treatment of pre-treated landfill leachate. Ecol. Eng. 2016, 94, 268–274. [Google Scholar] [CrossRef]
- Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. J. Hazard. Mater. 2015, 286, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, F.M.; Bruni, A.T.; Povinelli, J.; Vieira, E.M. Leachate/domestic wastewater aerobic co-treatment: A pilot-scale study using multivariate analysis. J. Environ. Manag. 2016, 166, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, S.; Gu, X.; Wang, K. Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process. Waste Manag. 2009, 29, 1354–1358. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.F.; Fonseca, A.; Saraiva, I.; Vilar, V.J.; Boaventura, R.A. Biodegradability enhancement of a leachate after biological lagooning using a solar driven photo-Fenton reaction, and further combination with an activated sludge biological process, at pre-industrial scale. Water Res. 2013, 47, 3543–3557. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.S.; Abbas, A.A.; Chen, Y.P.; Liu, Z.P.; Fang, F.; Chen, P. Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process. J. Hazard. Mater. 2010, 178, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Neczaj, E. Ultrasound Improvement of Landfill Leachate Biological Treatment Process, 1st ed.; Wydawnictwo Politechniki Czestochowskiej: Czestochowa, Poland, 2010; pp. 1–106. (In Polish) [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA, 1999. [Google Scholar]
- USEPA—United States Environmental Protection Agency. Method 1683—Specific Oxygen Uptake Rate; EPA-821-R-01-014; USEPA: Washington, DC, USA, 2001. Available online: https://www.epa.gov/sites/production/files/2015-10/documents/method_1683_draft_2001.pdf (accessed on 9 January 2018).
- Yin, J.; Tan, X.J.; Ren, N.Q.; Cui, Y.B.; Tang, L. Evaluation of heavy metal inhibition of activated sludge by TTC and INT-electron transport system activity tests. Water Sci. Technol. 2005, 52, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.C.; Lo, S.L.; Kuo, J.; Yeh, C.J. Microwave-enhanced persulfate oxidation to treat mature landfill leachate. J. Hazard. Mater. 2015, 284, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Pagano, M.; Volpe, A.; Di Pinto, A.C. Fenton’s pre-treatment of mature landfill leachate. Chemosphere 2004, 54, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Mature landfill leachate treatment by denitrification and ozonation. Process Biochem. 2011, 46, 148–153. [Google Scholar] [CrossRef]
- Hu, X.; Wang, X.; Ban, Y.; Ren, B. A comparative study of UV–Fenton, UV–H2O2 and Fenton reaction treatment of landfill leachate. Environ. Technol. 2011, 32, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Brennan, R.B.; Clifford, E.; Devroedt, C.; Morrison, L.; Healy, M.G. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations. J. Environ. Manag. 2017, 188, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Order of the Minister of Environment of 18 November 2014 Laying Down Conditions for the Introduction of Sewage into Water Bodies or Soil and Laying Down the List of Substances Particularly Harmful to Water Environments. 2014. Available online: http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU2 0140001800/O/D20141800.pdf (accessed on 9 January 2018). (In Polish)
- Ceçen, F.; Aktas, O. Effect of PAC addition in combined treatment of landfill leachate and domestic wastewater in semi-continuously fed batch and continuous-flow reactors. Water SA 2001, 27, 177–188. [Google Scholar] [CrossRef]
- Çeçen, F.; Çakıroğlu, D. Impact of landfill leachate on the co-treatment of domestic wastewater. Biotechnol. Let. 2001, 23, 821–826. [Google Scholar] [CrossRef]
- Fudala-Ksiazek, S.; Luczkiewicz, A.; Fitobor, K.; Olanczuk-Neyman, K. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor. Environ. Sci. Pollut. Res. 2014, 21, 7307–7318. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosser, A.; Neczaj, E.; Madela, M.; Celary, P. Treatment of Landfill Leachate Using Ultrasound Assisted SBR Reactor. Proceedings 2018, 2, 648. https://doi.org/10.3390/proceedings2110648
Grosser A, Neczaj E, Madela M, Celary P. Treatment of Landfill Leachate Using Ultrasound Assisted SBR Reactor. Proceedings. 2018; 2(11):648. https://doi.org/10.3390/proceedings2110648
Chicago/Turabian StyleGrosser, Anna, Ewa Neczaj, Magdalena Madela, and Piotr Celary. 2018. "Treatment of Landfill Leachate Using Ultrasound Assisted SBR Reactor" Proceedings 2, no. 11: 648. https://doi.org/10.3390/proceedings2110648
APA StyleGrosser, A., Neczaj, E., Madela, M., & Celary, P. (2018). Treatment of Landfill Leachate Using Ultrasound Assisted SBR Reactor. Proceedings, 2(11), 648. https://doi.org/10.3390/proceedings2110648