Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Authors = Abdulaziz K. Assaifan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1963 KiB  
Article
Evaluation of Non-Faradaic Impedimetric Parameters for IL-8 Detection Using Gold Interdigitated Electrode-Based Biosensors: Towards Early Detection of Newborn Disability
by Abdulelah S. Alrebaish, Layla O. Alnami, Joud M. Alshraim, Razan A. Alnghemshi, Alanoud A. Aljammaz, Amir Altinawi, Kholood K. Alhuthali, Hend Alfadul and Abdulaziz K. Assaifan
Micromachines 2025, 16(4), 395; https://doi.org/10.3390/mi16040395 - 28 Mar 2025
Viewed by 569
Abstract
Interleukin-8 (IL-8) is a critical biomarker associated with inflammation and disability in both adults and newborns. Conventional detection methods are often labor-intensive, time-consuming, and require highly trained personnel. Non-Faradaic impedimetric biosensors offer a label-free, rapid, and direct approach for IL-8 detection. While previous [...] Read more.
Interleukin-8 (IL-8) is a critical biomarker associated with inflammation and disability in both adults and newborns. Conventional detection methods are often labor-intensive, time-consuming, and require highly trained personnel. Non-Faradaic impedimetric biosensors offer a label-free, rapid, and direct approach for IL-8 detection. While previous studies have primarily focused on capacitance and phase changes, the potential of other impedimetric parameters remains underexplored. In this study, a gold interdigitated electrode (Au-IDE)-based non-Faradaic biosensor was developed for IL-8 detection, evaluating multiple impedimetric parameters, including capacitance, impedance magnitude (Zmod), real impedance (Zreal), and imaginary impedance (Zimag). Among these, Zimag exhibited the lowest limit of detection (LoD) at 90 pg/mL, followed by Zmod at 120 pg/mL, and capacitance at 140 pg/mL, all significantly below the clinical threshold of 600 pg/mL. In contrast, Zreal displayed the highest LoD at 1.3 ng/mL. Sensitivity analysis revealed that Zimag provided the highest sensitivity at 13.1 kΩ/log (ng/mL), making it the most effective parameter for detecting IL-8 at low concentrations. The sensitivity of Zmod and Zreal was lower, while capacitance sensitivity was measured at 20 nF/log (ng/mL). These findings highlight the importance of investigating alternative impedimetric parameters beyond capacitance to optimize biosensor performance for biomarker detection. This study demonstrates that non-Faradaic biosensors, despite their capacitive-based nature, can achieve enhanced sensitivity and detection limits by leveraging additional impedimetric parameters, offering a promising approach for rapid and effective IL-8 detection. Full article
(This article belongs to the Special Issue Point-of-Care Testing Based on Biosensors and Biomimetic Sensors)
Show Figures

Figure 1

10 pages, 5162 KiB  
Article
Thiol-SAM Concentration Effect on the Performance of Interdigitated Electrode-Based Redox-Free Biosensors
by Abdulaziz K. Assaifan
Micromachines 2024, 15(10), 1254; https://doi.org/10.3390/mi15101254 - 12 Oct 2024
Cited by 2 | Viewed by 1424
Abstract
Despite the direct, redox-free and simple detection non-faradaic impedimetric biosensors offer, considerable optimizations are required to enhance their performance for the detection of various biomarkers. Non-faradaic EIS sensors’ performance depends on the interfacial capacitance between a polarized biosensor surface and the tested sample [...] Read more.
Despite the direct, redox-free and simple detection non-faradaic impedimetric biosensors offer, considerable optimizations are required to enhance their performance for the detection of various biomarkers. Non-faradaic EIS sensors’ performance depends on the interfacial capacitance between a polarized biosensor surface and the tested sample solution. Careful engineering and design of the interfacial capacitance is encouraged to magnify the redout signal upon bioreceptor–antigen interactions. One of the methods to achieve this goal is by optimizing the self-assembled monolayer concentration, which has not been reported for non-faradaic impedimetric sensors. Here, the impact of alkanethiolate (cysteamine) concentration on the performance of gold (Au) interdigitated electrode (Au-IDE) biosensors is reported. Six sets of biosensors were prepared, each with a different cysteamine concentration: 100 nM, 1 μM, 10 μM, 100 μM, 1 mM, and 10 mM. The biosensors were prepared for the direct detection of LDL cholesterol by attaching LDL antibodies on top of the cysteamine via a glutaraldehyde cross-linker. As the concentration of cysteamine increased from 100 nM to 100 μM, the sensitivity of the biosensor increased from 6.7 to 16.2 nF/ln (ng/mL). As the cysteamine concentration increased from 100 μM to 10 mM, the sensitivity deteriorated. The limit of detection (LoD) of the biosensor improved as the cysteamine increased from 100 nM to 100 μM (i.e., 400 ng/mL to 59 pg/mL). However, the LoD started to increase to 67 pg/mL and 16 ng/mL for 1 mM and 10 mM cysteamine concentrations, respectively. This shows that the cysteamine concentration has a detrimental effect on redox-free biosensors. The cysteamine layer has to be as thin as possible and uniformly cover the electrode surfaces to maximize positive readout signals and reduce negative signals, significantly improving both sensitivity and LoD. Full article
Show Figures

Figure 1

14 pages, 6379 KiB  
Article
PBAT/PLA-Based Electrospun Nanofibrous Protective Clothes with Superhydrophobicity, Permeability, and Thermal Insulation Characteristics for Individuals with Disabilities
by Muhammad Omer Aijaz, Ubair Abdus Samad, Ibrahim A. Alnaser, Md Irfanul Haque Siddiqui, Abdulaziz K. Assaifan and Mohammad Rezaul Karim
Polymers 2024, 16(17), 2469; https://doi.org/10.3390/polym16172469 - 30 Aug 2024
Cited by 5 | Viewed by 1698
Abstract
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability [...] Read more.
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability and hydrostatic pressure resistance tests, UV–vis spectroscopy, thermal infrared photography, tensile tests, and nanoindentation. The results demonstrated the integration of superhydrophobicity, breathability, and mechanical improvements in the protective clothing. The nanofibrous porous structure of the fabric allowed breathability, while the silica nanoparticles acted as an effective infrared reflector to keep the wearer cool on hot days. The fabric’s multifunctional properties make it suitable for various products, such as outdoor clothing and accessories for individuals with disabilities. This study highlights the importance of selecting appropriate textiles for protective clothing and the challenges faced by disabled individuals in terms of mobility, eating, and dressing. The innovative and purposeful design of this multifunctional protective clothing aimed to enrich the lives of individuals with disabilities. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Graphical abstract

13 pages, 6390 KiB  
Article
Silica NPs in PLA-Based Electrospun Nanofibrous Non-Woven Protective Fabrics with Dual Hydrophilicity/Hydrophobicity, Breathability, and Thermal Insulation Characteristics for Individuals with Disabilities
by Muhammad Omer Aijaz, Mohammad Rezaul Karim, Ibrahim A. Alnaser, Md Irfanul Haque Siddiqui and Abdulaziz K. Assaifan
Polymers 2023, 15(20), 4139; https://doi.org/10.3390/polym15204139 - 18 Oct 2023
Cited by 8 | Viewed by 1943
Abstract
A perfect protective fabric for handicapped individuals must be lightweight, waterproof, breathable, and able to absorb water. We present a multifunctional protective fabric in which one side is hydrophobic based on the intrinsic hydrophobic biopolymer polylactic acid (PLA) to keep the disabled person [...] Read more.
A perfect protective fabric for handicapped individuals must be lightweight, waterproof, breathable, and able to absorb water. We present a multifunctional protective fabric in which one side is hydrophobic based on the intrinsic hydrophobic biopolymer polylactic acid (PLA) to keep the disabled person from getting wet, while the other side is super-hydrophilic due to embedded silica nanoparticles (NPs) to keep the disabled person safe from a sudden spill of water or other beverage on their skin or clothes. The porosity of the electrospun nanofibrous structure allows the fabric to be breathable, and the silica NPs play an important role as a perfect infrared reflector to keep the person’s clothing cool on warm days. Adding white NPs, such as silicon dioxide, onto or into the textile fibers is an effective method for producing thermally insulated materials. Due to their ability to efficiently block UV light, NPs in a network keep the body cool. Such a multifunctional fabric might be ideal for adult bibs and aprons, outdoor clothing, and other amenities for individuals with disabilities. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

12 pages, 2506 KiB  
Article
Toward the Real-Time and Rapid Quantification of Bacterial Cells Utilizing a Quartz Tuning Fork Sensor
by Abeer Alshammari, Sabaa T. Abdulmawla, Reem Alsaigh, Khaloud Mohammed Alarjani, Norah Salim Aldosari, Muthumareeswaran Muthuramamoorthy, Abdulaziz K. Assaifan, Hamad Albrithen, Khalid E. Alzahrani and Abdullah N. Alodhayb
Micromachines 2023, 14(6), 1114; https://doi.org/10.3390/mi14061114 - 25 May 2023
Cited by 5 | Viewed by 1643
Abstract
The quantitative evaluation of bacterial populations is required in many studies, particularly in the field of microbiology. The current techniques can be time-consuming and require a large volume of samples and trained laboratory personnel. In this regard, on-site, easy-to-use, and direct detection techniques [...] Read more.
The quantitative evaluation of bacterial populations is required in many studies, particularly in the field of microbiology. The current techniques can be time-consuming and require a large volume of samples and trained laboratory personnel. In this regard, on-site, easy-to-use, and direct detection techniques are desirable. In this study, a quartz tuning fork (QTF) was investigated for the real-time detection of E. coli in different media, as well as the ability to determine the bacterial state and correlate the QTF parameters to the bacterial concentration. QTFs that are commercially available can also be used as sensitive sensors of viscosity and density by determining the QTFs’ damping and resonance frequency. As a result, the influence of viscous biofilm adhered to its surface should be detectable. First, the response of a QTF to different media without E. coli was investigated, and Luria–Bertani broth (LB) growth medium caused the largest change in frequency. Then, the QTF was tested against different concentrations of E. coli (i.e., 102–105 colony-forming units per milliliter (CFU/mL)). As the E. coli concentration increased, the frequency decreased from 32.836 to 32.242 kHz. Similarly, the quality factor decreased with the increasing E. coli concentration. With a coefficient (R) of 0.955, a linear correlation between the QTF parameters and bacterial concentration was established with a 26 CFU/mL detection limit. Furthermore, a considerable change in frequency was observed against live and dead cells in different media. These observations demonstrate the ability of QTFs to distinguish between different bacterial states. QTFs allow real-time, rapid, low-cost, and non-destructive microbial enumeration testing that requires only a small volume of liquid sample. Full article
(This article belongs to the Special Issue MEMS and Piezoelectric Sensors for Biomedical Applications)
Show Figures

Figure 1

17 pages, 12474 KiB  
Article
Developing PMMA/Coffee Husk Green Composites to Meet the Individual Requirements of People with Disabilities: Hip Spacer Case Study
by Ahmed Fouly, Ibrahim A. Alnaser, Abdulaziz K. Assaifan and Hany S. Abdo
J. Funct. Biomater. 2023, 14(4), 200; https://doi.org/10.3390/jfb14040200 - 5 Apr 2023
Cited by 7 | Viewed by 2253
Abstract
When replacing a damaged artificial hip joint, treatment involves using antibiotic-laced bone cement as a spacer. One of the most popular materials used for spacers is PMMA; however, it has limitations in terms of mechanical and tribological properties. To overcome such limitations, the [...] Read more.
When replacing a damaged artificial hip joint, treatment involves using antibiotic-laced bone cement as a spacer. One of the most popular materials used for spacers is PMMA; however, it has limitations in terms of mechanical and tribological properties. To overcome such limitations, the current paper proposes utilizing a natural filler, coffee husk, as a reinforcement for PMMA. The coffee husk filler was first prepared using the ball-milling technique. PMMA composites with varying weight fractions of coffee husk (0, 2, 4, 6, and 8 wt.%) were prepared. The hardness was measured to estimate the mechanical properties of the produced composites, and the compression test was utilized to estimate the Young modulus and compressive yield strength. Furthermore, the tribological properties of the composites were evaluated by measuring the friction coefficient and wear by rubbing the composite samples against stainless steel and cow bone counterparts under different normal loads. The wear mechanisms were identified via scanning electron microscopy. Finally, a finite element model for the hip joint was built to investigate the load-carrying capacity of the composites under human loading conditions. The results show that incorporating coffee husk particles can enhance both the mechanical and tribological properties of the PMMA composites. The finite element results are consistent with the experimental findings, indicating the potential of the coffee husk as a promising filler material for enhancing the performance of PMMA-based biomaterials. Full article
(This article belongs to the Special Issue Advances in Biomaterials and Biopolymers)
Show Figures

Figure 1

16 pages, 1964 KiB  
Article
Aspects of Polymeric-Based Membranes in the Water Treatment Field: An Interim Structural Analysis
by Muhammad Farzik Ijaz, Hamad F. Alharbi, Ahmed Zaki Alsaggaf and Abdulaziz K. Assaifan
Water 2023, 15(6), 1114; https://doi.org/10.3390/w15061114 - 14 Mar 2023
Cited by 3 | Viewed by 2311
Abstract
Solar-driven interfacial evaporation (SDIE) is considered a sustainable and environmentally friendly technology for using solar energy to produce fresh water, which is a crucial resource for the existence of human life. Porous membranes are widely used in SDIE owing to their porous structure, [...] Read more.
Solar-driven interfacial evaporation (SDIE) is considered a sustainable and environmentally friendly technology for using solar energy to produce fresh water, which is a crucial resource for the existence of human life. Porous membranes are widely used in SDIE owing to their porous structure, which is highly suitable for this kind of photothermal material and allows an efficient supply of water and escape of vapor during the evaporation process. Electrospinning is perhaps the most versatile technique to produce highly porous structures of nanofiber membranes with a large surface-to-volume ratio, high porosity, low density, and many advantages. Nevertheless, acquiring a stronger background on the initial research questions in this enticing field of research needs further investigation. Typically, for the enhancement of process control, the impact of flow rate on the morphology of the prepared membrane is quite important. This research article has two-fold objectives: firstly, it discusses the fundamental description of the photothermal conversion mechanism of polymer-based photothermal materials for water treatment. A systematic investigation supported by previous studies revealing the working mechanism and the design of solar-driven interfacial evaporation has been provided. On the other hand, our interim experimental results elaborate on the influence of process conditions such as electrospinning parameters on the structural morphology and diameter of fabricated electrospun nanofibers produced by using the coaxial electrospinning setup in our lab. The scanning electron microscope (SEM) was used to examine the morphology of the electrospun nanofibers. Our introductory results provide a useful insight into tuning the necessary process parameters to fabricate electrospun polyacrylonitrile (PAN) nanofiber membranes by electrospinning technique. From our preliminary results after the three processing experiments, it is revealed that a polymer concentration of 10% wt., an applied voltage of 20 kV, a tip-to-collector distance of 18 cm, and a flow rate of 0.8 mL/h produce the optimum nanofiber membranes with a uniform structure and a diameter in the range 304–394 nm. The variation in the diameter of nanofibers in the three processing conditions is endowed by the regulation of the initiating droplet extruded from the tip of the metallic needle (syringe jet) to the collector using the electrospinning setup. Full article
(This article belongs to the Special Issue Research in Application of Advanced Water Treatment Technology)
Show Figures

Figure 1

14 pages, 2283 KiB  
Article
The Effect of Counterions on the Detection of Cu2+ Ions in Aqueous Solutions Using Quartz Tuning Fork (QTF) Sensors Modified with L-Cysteine Self-Assembled Monolayers: Experimental and Quantum Chemical DFT Study
by Shofiur Rahman, Mahmoud A. Al-Gawati, Fatimah S. Alfaifi, Muthumareeswaran Muthuramamoorthy, Amal F. Alanazi, Hamad Albrithen, Khalid E. Alzahrani, Abdulaziz K. Assaifan, Abdullah N. Alodhayb and Paris E. Georghiou
Chemosensors 2023, 11(2), 88; https://doi.org/10.3390/chemosensors11020088 - 24 Jan 2023
Cited by 9 | Viewed by 2503
Abstract
In this study, a sensing device employing a gold-coated quartz tuning fork (QTF) modified with a self-assembled monolayer (SAM) of L-cysteine was evaluated for the sensitive detection of Cu2+ ions in aqueous solutions. Three copper (II) salts, CuSO4, CuCl2 [...] Read more.
In this study, a sensing device employing a gold-coated quartz tuning fork (QTF) modified with a self-assembled monolayer (SAM) of L-cysteine was evaluated for the sensitive detection of Cu2+ ions in aqueous solutions. Three copper (II) salts, CuSO4, CuCl2, and Cu(NO3)2, at four different concentrations (10−12, 10−10, 10−8, and 10−6 M) in small (100 μL) water sample amounts were each used as analytes to investigate the influence of their counterions in the detection of the Cu2+ ions. It was found that, among the counterions, the sulfate anion had the largest effect upon the detection of Cu2+ in water, in the following order: SO42− > Cl > NO3. The lower limit of detection of the Cu2+ ions detected was in the 10−12 M range. The frequency shifts measured with the QTFs relative to deionized water were inversely proportional to the concentration/mass of the analytes. Density functional theory calculations were conducted to understand the effect of the counterions on the respective electronic interaction energies for the apparent host–guest binding of the analytes with L-cysteine and with gold surface-bound L-cysteine molecules. Gas phase (both with and uncorrected BSSE) and solution phase interaction energies (ΔIE) calculated at the B3LYP/LANL2DZ and ωB97XD levels of theory showed that the stability for the complexes were in the following order: [L-cysteine]⊃[CuSO4] > [L-cysteine]⊃[CuCl2] > [L-cysteine]⊃[Cu(NO3)2], which supports our experimental findings, as they were in the same order as the experimentally observed order for the copper salts tested: CuSO4 > CuCl2 > Cu(NO3)2. Full article
(This article belongs to the Special Issue Chemosensors for Ion Detection)
Show Figures

Figure 1

16 pages, 34576 KiB  
Article
Preparation and Characterization of Electrospun Poly(lactic acid)/Poly(ethylene glycol)–b–poly(propylene glycol)–b–poly(ethylene glycol)/Silicon Dioxide Nanofibrous Adsorbents for Selective Copper (II) Ions Removal from Wastewater
by Muhammad Omer Aijaz, Seong Baek Yang, Mohammad Rezaul Karim, Ibrahim Abdullah Alnaser, Abdulelah Dhaifallah Alahmari, Fahad S. Almubaddel and Abdulaziz K. Assaifan
Membranes 2023, 13(1), 54; https://doi.org/10.3390/membranes13010054 - 1 Jan 2023
Cited by 13 | Viewed by 4627
Abstract
The problem of industrial wastewater containing heavy metals is always a big concern, especially Cu2+, which interprets the soil activity in farmland and leaves a negative impact on the environment by damaging the health of animals. Various methods have been proposed [...] Read more.
The problem of industrial wastewater containing heavy metals is always a big concern, especially Cu2+, which interprets the soil activity in farmland and leaves a negative impact on the environment by damaging the health of animals. Various methods have been proposed as countermeasures against heavy-metal contaminations, and, as a part of this, an electrospun nanofibrous adsorption method for wastewater treatment is presented as an alternative. Poly(lactic acid) (PLA) is a biopolymer with an intrinsic hydrophobic property that has been considered one of the sustainable nanofibrous adsorbents for carrying adsorbate. Due to the hydrophobic nature of PLA, it is difficult to adsorb Cu2+ contained in wastewater. In this study, the hydrophilic PLA/poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) nanofibrous adsorbents with different silicon dioxide (SiO2) concentrations were successfully prepared by electrospinning. A hydrophilic group of PEG-PPG-PEG was imparted in PLA by the blending method. The prepared PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents were analyzed with their morphological, contact angle analysis, and chemical structure. The Cu2+ adsorption capacities of the different PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents were also investigated. The adsorption results indicated that the Cu2+ removal capacity of PLA/PEG-PPG-PEG/SiO2 nanofibrous adsorbents was higher than that of pure ones. Additionally, as an affinity nanofibrous adsorbent, its adsorption capacity was maintained after multiple recycling processes (desorption and re-adsorption). It is expected to be a promising nanofibrous adsorbents that will adsorb Cu2+ for wastewater treatment. Full article
Show Figures

Figure 1

19 pages, 9846 KiB  
Article
Evaluating the Mechanical and Tribological Properties of 3D Printed Polylactic-Acid (PLA) Green-Composite for Artificial Implant: Hip Joint Case Study
by Ahmed Fouly, Abdulaziz K. Assaifan, Ibrahim A. Alnaser, Omar A. Hussein and Hany S. Abdo
Polymers 2022, 14(23), 5299; https://doi.org/10.3390/polym14235299 - 4 Dec 2022
Cited by 32 | Viewed by 4456
Abstract
Artificial implants are very essential for the disabled as they are utilized for bone and joint function in orthopedics. However, materials used in such implants suffer from restricted mechanical and tribological properties besides the difficulty of using such materials with complex structures. The [...] Read more.
Artificial implants are very essential for the disabled as they are utilized for bone and joint function in orthopedics. However, materials used in such implants suffer from restricted mechanical and tribological properties besides the difficulty of using such materials with complex structures. The current study works on developing a new polymer green composite that can be used for artificial implants and allow design flexibility through its usage with 3D printing technology. Therefore, a natural filler extracted from corn cob (CC) was prepared, mixed homogeneously with the Polylactic-acid (PLA), and passed through a complete process to produce a green composite filament suit 3D printer. The corn cob particles were incorporated with PLA with different weight fractions zero, 5%, 10%, 15%, and 20%. The physical, mechanical, and tribological properties of the PLA-CC composites were evaluated. 3D finite element models were constructed to evaluate the PLA-CC composites performance on a real condition implant, hip joints, and through the frictional process. Incorporating corn cob inside PLA revealed an enhancement in the hardness (10%), stiffness (6%), compression ultimate strength (12%), and wear resistance (150%) of the proposed PLA-CC composite. The finite element results of both models proved an enhancement in the load-carrying capacity of the composite. The finite element results came in line with the experimental results. Full article
(This article belongs to the Special Issue Advanced Polymer Composites for Medical Applications)
Show Figures

Figure 1

15 pages, 4614 KiB  
Article
Detection of Volatile Alcohol Vapors Using PMMA-Coated Micromechanical Sensors: Experimental and Quantum Chemical DFT Analysis
by Reem A. Alsaigh, Shofiur Rahman, Fatimah S. Alfaifi, Mahmoud A. Al-Gawati, Raghad Shallaa, Fatimah Alzaid, Amal F. Alanazi, Hamad Albrithen, Khalid E. Alzahrani, Abdulaziz K. Assaifan, Abdullah N. Alodhayb and Paris E. Georghiou
Chemosensors 2022, 10(11), 452; https://doi.org/10.3390/chemosensors10110452 - 1 Nov 2022
Cited by 7 | Viewed by 2546
Abstract
Micromechanical sensors, in which the sensor response is created as a result of molecular interactions on the sensors’ surfaces, have been employed as a powerful technique for rapid and sensitive detection of low concentrations of chemical and biological materials. In the study reported [...] Read more.
Micromechanical sensors, in which the sensor response is created as a result of molecular interactions on the sensors’ surfaces, have been employed as a powerful technique for rapid and sensitive detection of low concentrations of chemical and biological materials. In the study reported herein, poly(methyl methacrylate) (PMMA)-coated microcantilever (MCL) sensors were used to detect the vapors of volatile alcohols (methanol, ethanol, and isopropanol) at three different concentrations. A vapor generator was used to generate and flow the alcohol vapor onto the PMMA coated MCL surface in a closed system chamber. The vapor adsorption onto the MCL surface results in a rapid and measurable deflection of the MCL. No significant deflections of the uncoated MCL occurred when the different vapors were passed through into the microcantilever chamber. Linear concentration–deflection responses were observed, with the highest sensitivity shown with methanol, followed by ethanol and then isopropanol. Density functional theory (DFT) quantum chemical calculations were conducted to estimate the electronic interaction energies (ΔIE) between the alcohol molecules and MMA and two different model tetrameric segments of PMMA. The computed ΔIEs were in the same order as the experimentally observed order: methanol > ethanol > isopropanol. Full article
(This article belongs to the Special Issue Feature Papers on Optical Chemical Sensors and Biosensors)
Show Figures

Figure 1

20 pages, 6795 KiB  
Article
Evaluating the Performance of 3D-Printed PLA Reinforced with Date Pit Particles for Its Suitability as an Acetabular Liner in Artificial Hip Joints
by Ahmed Fouly, Ibrahim A. Alnaser, Abdulaziz K. Assaifan and Hany S. Abdo
Polymers 2022, 14(16), 3321; https://doi.org/10.3390/polym14163321 - 15 Aug 2022
Cited by 23 | Viewed by 3080
Abstract
Off-the-shelf hip joints are considered essential parts in rehabilitation medicine that can help the disabled. However, the failure of the materials used in such joints can cause individual discomfort. In support of the various motor conditions of the influenced individuals, the aim of [...] Read more.
Off-the-shelf hip joints are considered essential parts in rehabilitation medicine that can help the disabled. However, the failure of the materials used in such joints can cause individual discomfort. In support of the various motor conditions of the influenced individuals, the aim of the current research is to develop a new composite that can be used as an acetabular liner inside the hip joint. Polylactic acid (PLA) can provide the advantage of design flexibility owing to its well-known applicability as a 3D printed material. However, using PLA as an acetabular liner is subject to limitations concerning mechanical properties. We developed a complete production process of a natural filler, i.e., date pits. Then, the PLA and date pit particles were extruded for homogenous mixing, producing a composite filament that can be used in 3D printing. Date pit particles with loading fractions of 0, 2, 4, 6, 8, and 10 wt.% are dispersed in the PLA. The thermal, physical, and mechanical properties of the PLA–date pit composites were estimated experimentally. The incorporation of date pit particles into PLA enhanced the compressive strength and stiffness but resulted in a reduction in the elongation and toughness. A finite element model (FEM) for hip joints was constructed, and the contact stresses on the surface of the acetabular liner were evaluated. The FEM results showed an enhancement in the composite load carrying capacity, in agreement with the experimental results. Full article
(This article belongs to the Special Issue Structure and Properties of Polymer Composites)
Show Figures

Figure 1

18 pages, 4077 KiB  
Article
Carbon Nanodots-Embedded Pullulan Nanofibers for Sulfathiazole Removal from Wastewater Streams
by Muhammad Omer Aijaz, Munir Ahmad, Mohammad I. Al-Wabel, Mohammad Rezaul Karim, Adel R. A. Usman and Abdulaziz K. Assaifan
Membranes 2022, 12(2), 228; https://doi.org/10.3390/membranes12020228 - 16 Feb 2022
Cited by 10 | Viewed by 3062
Abstract
Carbon nanodots (CNDs)-embedded pullulan (PUL) nanofibers were developed and successfully applied for sulfathiazole (STZ) removal from wastewater streams for the first time. The CNDs were incorporated into PUL at 0.0%, 1.0%, 2.0%, and 3.0% (w/w) to produce M1, M2, [...] Read more.
Carbon nanodots (CNDs)-embedded pullulan (PUL) nanofibers were developed and successfully applied for sulfathiazole (STZ) removal from wastewater streams for the first time. The CNDs were incorporated into PUL at 0.0%, 1.0%, 2.0%, and 3.0% (w/w) to produce M1, M2, M3, and M4 nanofibers (PUL-NFs), respectively. The produced PUL-NFs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), thermal gravimetric analysis (TGA) and Differential scanning calorimetry (DSC) and applied for STZ removal from aqueous solutions through pH, kinetics, and equilibrium batch sorption trials. A pH range of 4.0–6.0 was observed to be optimal for maximum STZ removal. Pseudo-second order, intraparticle diffusion, and Elovich models were suitably fitted to kinetics adsorption data (R2 = 0.82–0.99), whereas Dubinin–Radushkevich, Freundlich, and Langmuir isotherms were fitted to equilibrium adsorption data (R2= 0.88–0.99). STZ adsorption capacity of PUL-NFs improved as the amount of embedded CNDs increased. Maximum STZ adsorption capacities of the synthesized PUL-NFs were in the order of: M4 > M3 > M2 > M1 (133.68, 124.27, 93.09, and 35.04 mg g−1, respectively). Lewis acid–base reaction and π-π electron donor–acceptor interactions were the key STZ removal mechanisms under an acidic environment, whereas H-bonding and diffusion were key under a basic environment. Therefore, CNDs-embedded PUL-NFs could be employed as an environmentally friendly, efficient, and non-toxic adsorbent to remove STZ from wastewater streams. Full article
Show Figures

Figure 1

18 pages, 10271 KiB  
Article
Electrospun Bilayer PAN/Chitosan Nanofiber Membranes Incorporated with Metal Oxide Nanoparticles for Heavy Metal Ion Adsorption
by Hamad F. Alharbi, Mustafa Y. Haddad, Muhammed Omer Aijaz, Abdulaziz K. Assaifan and Mohammed R. Karim
Coatings 2020, 10(3), 285; https://doi.org/10.3390/coatings10030285 - 19 Mar 2020
Cited by 53 | Viewed by 5993
Abstract
Bilayer nanofiber membranes with enhanced adsorption and mechanical properties were produced by combining a layer of polyacrylonitrile (PAN) functionalized with metal oxides (MO) of ZnO or TiO2 with a layer of chitosan (CS) via consecutive electrospinning. The adsorption properties of the bilayer [...] Read more.
Bilayer nanofiber membranes with enhanced adsorption and mechanical properties were produced by combining a layer of polyacrylonitrile (PAN) functionalized with metal oxides (MO) of ZnO or TiO2 with a layer of chitosan (CS) via consecutive electrospinning. The adsorption properties of the bilayer PAN/MO–CS nanofiber membranes against lead (Pb(II)) and cadmium (Cd(II)) ions were investigated, including the effects of the solution pH, initial ion concentrations, and interaction time. The integration of a CS layer into PAN/MO nanofibers increased the adsorption capacity of lead by 102% and cadmium by 405%, compared to PAN/MO single layer. The nonlinear optimization method showed that the pseudo-second-order kinetic model and Langmuir isotherm equation better described the adsorption results. More importantly, the incorporation of a supportive CS nanofiber layer enhanced the tensile strength of PAN/MO–CS bilayer by approximately 68% compared to the PAN/MO single layer, owing to the strong interaction between the fibers at the interface of the two layers. Full article
Show Figures

Figure 1

Back to TopTop