Bridging the Gap: Genetic Insights into Graft Compatibility for Enhanced Kiwifruit Production
Abstract
:1. Introduction
2. Grafting Techniques for Fruit Tree Propagation
3. Graft Union Formation in Different Fruit Trees: Compatibility and Incompatibility
4. Genetic Mechanism of Graft Compatibility/Incompatibility
4.1. Gene Expression Profile
Species | Functional Categories | Gene Classes Involved During Grafting | Reference |
---|---|---|---|
Arabidopsis thaliana | Wound-induced gene, Ethylene related genes, Transcriptional factors | WOX13, ERF115, ANAC071, ANAC076, RAP2.6L, DOF, HCA2, TMO6 | [46,50,52,53] |
Citrus (Citrus maxima, Citrus limon, Citrus sinensis) | Lignin biosynthesis, ROS scavenging, auxin-signal transduction, hormone signaling, ABA-related genes, ethylene-related genes, starch and sucrose metabolism, transcriptional factors | CNGC1, PNP-A, WR protein, PEROX, EDS1, GA20OX2, LRR, WRKY51, SAUR, XCP1, HEXO2, NIMIN-2, TUB, NCEDs, PYL, PP2C, TIFY-10A | [63,64] |
Grapevines (Vitis vinifera) | Cell wall synthesis, secondary metabolism, vascular development hormone signaling | F4P13, ENOD9, F6N15, CPs III, XCP1, Cuc, SAG101, APETALA2, P450, DEA1, PPFK, LRRIII, Myb-like 102, LEA14A, LBD4, LeDI-5c, AUX1-like | [59] |
Hickory (Carya cathayensis) | indole-3-acetic acid transport, signal transduction and mechanism, protein metabolism, water metabolism, and nuclear metabolism | eIF-4A, CAT4, ARF, K1/E32 K1 glycoprotein, PIP1B | [56] |
Pecan (Carya illinoinensis) | hormone signaling, cell proliferation, xylem differentiation, cell elongation, cell wall deposition, programmed cell death, and ROS scavenging | POD, CAT, APX, NAC, Cellulose synthase, Laccase, Aspartic proteinase, Ribonuclease, CYCD, ARF, Type-B ARR, GA2ox | [57] |
Litchi (Litchi chinensis) | metabolism, wound response, phenylpropanoid biosynthesis, auxin pathway, lignin biosynthesis | TAA, YUC, Aux/IAA, auxin-responsive protein IAA, auxin-induced protein, PALs, C4Hs, C3H, 4CLs, CCRs, COMTs, F5H, CADs | [62] |
Pear (Pyrus communis L.)/quince (Cydonia oblonga) | ROS scavenging | APX1, APX2, APX3, APX6, CAT1, CAT3, Cu-ZnSOD1, Cu-ZnSOD2, Cu-ZnSOD3 | [61] |
Pear (Pyrus ussuriensis) | kinase function, carbohydrate metabolism, protein metabolism, cell activity and development, nuclear metabolism, energy | STY13-like, EIF-4A8, UBPS-like2B, FTSHI3, DEAD-box rde-12-like, MT-A70-like, pno1, guanine nucleotide-binding protein 3, 7-deoxyloganetin glucosyltransferase-like, 2-hydrosylase FAH1-like, At5g52850-like, CDC2, PHO1-like, ATPC | [60] |
Tomato (Solanum lycopersicum) and Pepper (Capsicum annum) | vascular development | SlWOX4 | [65] |
4.2. Hormonal Regulation
5. Genetic Distance
6. Potential Markers Involved in Genetic Compatibility and Incompatibility in Fruit Trees
6.1. Molecular Markers
6.2. Transcriptomic and Proteomic Markers
7. Primary and Secondary Metabolites During Compatible and Incompatible Interaction
8. Trans-Grafting and siRNA Movement: Breakthrough or Barrier?
9. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A History of Grafting. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; Volume 35, pp. 437–493. [Google Scholar] [CrossRef]
- Ferguson, R.A.; Huang, H. Genetic Resources of Kiwifruit: Domestication and Breeding. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Volume 33, pp. 1–121. [Google Scholar] [CrossRef]
- De Mori, G.; De Rosa, V.; Cipriani, G. Molecular Markers and Allele Mining in Kiwifruit Breeding. In Allele Mining for Genomic Designing of Fruit Crops; CRC Press: Boca Raton, FL, USA, 2024; pp. 270–291. ISBN 9781003846543. [Google Scholar]
- Li, M.Z.; Wang, L.H.; Zhuang, Q.G.; Xie, Y. New Red- and Yellow-Fleshed Kiwifruit Cultivars. Acta Hortic. 2018, 1218, 135–138. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Meng, A. Selection of a New Red-Fleshed Kiwifruit Cultivar “Hongyang”. Acta Hortic. 2003, 610, 115–117. [Google Scholar] [CrossRef]
- Guroo, I.; Sa, W.; Sm, W.; Ahmad, M.; Sa, M.; Fa, M. A Review of Production and Processing of Kiwifruit. J. Food Process Technol. 2017, 8, 699. [Google Scholar] [CrossRef]
- Bai, D.; Li, Z.; Gu, S.; Li, Q.; Sun, L.; Qi, X.; Fang, J.; Zhong, Y.; Hu, C. Effects of Kiwifruit Rootstocks with Opposite Tolerance on Physiological Responses of Grafting Combinations under Waterlogging Stress. Plants 2022, 11, 2098. [Google Scholar] [CrossRef]
- Zenginbal, H.; Ozcan, M.; Demir, T. An Investigation on the Propagation of Kiwifruit (Actinidia deliciosa, A. Chev.) by Grafting under Turkey Ecological Conditions. Int. J. Agric. Res. 2006, 1, 597–602. [Google Scholar] [CrossRef]
- Sedaghathoor, S.; Noie, M. Study on Different Grafting Methods of Kiwifruit Hayward on the Matua and Bruno Rootstocks. Fruits 2016, 71, 275–280. [Google Scholar] [CrossRef]
- Celik, H.; Zenginbal, H.; Ozcan, M. Effect of Budding Performed by Hand and with Manual Grafting Unit on Kiwifruit Propagation in the Field. Hortic. Sci. 2006, 33, 57–60. [Google Scholar] [CrossRef]
- Mozumder, S.N.; Haque, M.I.; Shahiduzzaman, M.; Goswami, B.K. Effect of grafting time and methods on success of plum propagation. Int. J. Sci. Educ. 2017, 4, 16–21. [Google Scholar]
- Ahmed, N.; Singh, S.R.; Srivastava, K.K.; Shagoo, P.A.; Hayat, S. Effect of Different Environments, Grafting Methods and Times on Sprouting, Graft Success and Plant Growth of Walnut (Juglans regia). Indian J. Agric. Sci. 2012, 82, 1022–1026. [Google Scholar] [CrossRef]
- Ashrafzadeh, S. In Vitro Grafting—Twenty-First Century’s Technique for Fruit Tree Propagation. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 404–405. [Google Scholar] [CrossRef]
- Cui, Z.H.; Agüero, C.B.; Wang, Q.C.; Walker, M.A. Validation of Micrografting to Identify Incompatible Interactions of Rootstocks with Virus-Infected Scions of Cabernet Franc. Aust. J. Grape Wine Res. 2019, 25, 268–275. [Google Scholar] [CrossRef]
- Tanne, E.; Shlamovitz, N.; Spiegel-Roy, P. Rapidly Diagnosing Grapevine Corky-Bark by In Vitro Micrografting. HortScience 1993, 28, 667–668. [Google Scholar] [CrossRef]
- Bao, W.W.; Zhang, X.C.; Zhang, A.L.; Zhao, L.; Wang, Q.C.; Liu, Z. De Validation of Micrografting to Evaluate Drought Tolerance in Micrografts of Kiwifruits (Actinidia spp.). Plant Cell Tissue Organ Cult. 2020, 140, 291–300. [Google Scholar] [CrossRef]
- Bao, W.W.; Zhang, X.C.; Zhang, A.L.; Zhao, L.; Wang, Q.C.; Liu, Z. De Validation of Micrografting to Analyze Compatibility, Shoot Growth, and Root Formation in Micrografts of Kiwifruit (Actinidia spp.). Plant Cell Tissue Organ Cult. 2020, 140, 209–214. [Google Scholar] [CrossRef]
- Yao, W.; Kong, L.; Lei, D.; Zhao, B.; Tang, H.; Zhou, X.; Lin, Y.; Zhang, Y.; Wang, Y.; He, W.; et al. Establishment of an Efficient Method for Kiwifruit In Vitro Micrografting. Plant Cell Tissue Organ Cult. 2023, 152, 427–436. [Google Scholar] [CrossRef]
- Bhatt, K.; Banday, F.A.; Mir, M.A.; Rather, Z.; Hussain, G. In Vitro Grafting in Apple (Malus domestica. Borkh) Cv. Lal Ambri. Karnataka J. Agric. Sci. 2013, 26, 399–402. [Google Scholar]
- Dobránszky, J.; Magyar-Tábori, K.; Jámbor-Benczúr, E.; Lazányi, J. New In Vitro Micrografting Method for Apple by Sticking. Int. J. Hortic. Sci. 2000, 6, 79–83. [Google Scholar] [CrossRef]
- Errea, P.; Garay, L.; Marín, J.A. Early Detection of Graft Incompatibility in Apricot (Prunus armeniaca) Using In Vitro Techniques. Physiol. Plant 2001, 112, 135–141. [Google Scholar] [CrossRef]
- Yildirim, H.; Onay, A.; Süzerer, V.; Tilkat, E.; Ozden-Tokatli, Y.; Akdemir, H. Micrografting of Almond (Prunus dulcis Mill.) Cultivars “Ferragnes” and “Ferraduel”. Sci. Hortic. 2010, 125, 361–367. [Google Scholar] [CrossRef]
- Edriss, M.H.; Burger, D.W. Micro-Grafting Shoot-Tip Culture of Citrus on Three Trifoliolate Rootstocks. Sci. Hortic. 1984, 23, 255–259. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, B.; Rani, G.; Zaidi, A.A.; Hallan, V.; Nagpal, A.; Virk, G.S. In Vitro Production of Indian citrus ringspot virus (ICRSV) Free Kinnow Plants Employing Phytotherapy Coupled with Shoot Tip Grafting. Vitr. Cell. Dev. Biol.—Plant 2007, 43, 254–259. [Google Scholar] [CrossRef]
- Singh, A.K.; Meetei, N.T.; Kundu, S.; Salma, U.; Mandal, N. In Vitro Micrografting Using Three Diverse Indigenous Rootstocks for the Production of Citrus Tristeza Virus-Free Plants of Khasi Mandarin. Vitr. Cell. Dev. Biol.—Plant 2019, 55, 180–189. [Google Scholar] [CrossRef]
- Abousalim, A.; Mantell, S.H. Micrografting of Pistachio (Pistacia vera L. Cv. Mateur). Plant Cell Tissue Organ Cult. 1992, 29, 231–234. [Google Scholar] [CrossRef]
- Vozárová, Z.; Nagyová, A.; Nováková, S. In Vitro Micrografting of Different Prunus Species by Cherry-Adapted Plum Pox Virus Isolate. Acta Virol. 2018, 62, 109–111. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Chen, Q.; Tian, J. Studies on Factors Affecting the Microshoot Grafting Survival of Walnut. Acta Hortic. 2010, 861, 327–332. [Google Scholar] [CrossRef]
- Pina, A.; Errea, P. A Review of New Advances in Mechanism of Graft Compatibility–Incompatibility. Sci. Hortic. 2005, 106, 1–11. [Google Scholar] [CrossRef]
- Harada, T. Grafting and RNA Transport via Phloem Tissue in Horticultural Plants. Sci. Hortic. 2010, 125, 545–550. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Imtiaz, M.; Kong, Q.; Cheng, F.; Ahmed, W.; Huang, Y.; Bie, Z. Grafting: A Technique to Modify Ion Accumulation in Horticultural Crops. Front. Plant Sci. 2016, 7, 221552. [Google Scholar] [CrossRef]
- Trinchera, A.; Pandozy, G.; Rinaldi, S.; Crinò, P.; Temperini, O.; Rea, E. Graft Union Formation in Artichoke Grafting onto Wild and Cultivated Cardoon: An Anatomical Study. J. Plant Physiol. 2013, 170, 1569–1578. [Google Scholar] [CrossRef]
- Melnyk, C.W.; Schuster, C.; Leyser, O.; Meyerowitz, E.M. A Developmental Framework for Graft Formation and Vascular Reconnection in Arabidopsis thaliana. Curr. Biol. 2015, 25, 1306–1318. [Google Scholar] [CrossRef]
- Goldschmidt, E.E. Plant Grafting: New Mechanisms, Evolutionary Implications. Front. Plant Sci. 2014, 5, 109919. [Google Scholar] [CrossRef]
- Rasool, A.; Mansoor, S.; Bhat, K.M.; Hassan, G.I.; Baba, T.R.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.A.; Paray, B.A.; Ahmad, P. Mechanisms Underlying Graft Union Formation and Rootstock Scion Interaction in Horticultural Plants. Front. Plant Sci. 2020, 11, 590847. [Google Scholar] [CrossRef]
- Zarrouk, O.; Gogorcena, Y.; Moreno, M.A.; Pinochet, J. Graft Compatibility Between Peach Cultivars and Prunus Rootstocks. HortScience 2006, 41, 1389–1394. [Google Scholar] [CrossRef]
- Güçlü, S.F.; Koyuncu, F. A Method for Prediction of Graft Incompatibility in Sweet Cherry. Not. Bot. Horti Agrobot. Cluj. Napoca 2012, 40, 243–246. [Google Scholar] [CrossRef]
- Turnbull, C.G.N. Grafting as a Research Tool. Methods Mol. Biol. 2010, 655, 11–26. [Google Scholar] [CrossRef]
- Olmstead, M.A.; Lang, N.S.; Ewers, F.W.; Owens, S.A. Xylem Vessel Anatomy of Sweet Cherries Grafted onto Dwarfing and Nondwarfing Rootstocks. J. Am. Soc. Hortic. Sci. 2006, 131, 577–585. [Google Scholar] [CrossRef]
- Polat, M.; Dolgun, O.; Yıldırım, A.; Aşkın, M.; Gökbayrak, Z. Graft Union Formation of Spur Apple Varieties Grafted on Different Rootstocks. J. Food Agric. Environ. 2010, 8, 490–493. [Google Scholar]
- Mahunu, G.K.; Adjei, P.Y.; Asante, A.K. Anatomical Studies on Graft Formation in Cashew (Anacardium occidentale L.). Agric. Biol. J. N. Am. 2012, 3, 150–153. [Google Scholar] [CrossRef]
- Deepak, G.N.; Singh, C.; Jeevan, U.; Priyanka, H.L.; Krishna, K.R. Early Identification of Graft Compatibility through Histological Studies in Mango. Indian J. Hortic. 2019, 76, 176–179. [Google Scholar] [CrossRef]
- He, W.; Xie, R.; Wang, Y.; Chen, Q.; Wang, H.; Yang, S.; Luo, Y.; Zhang, Y.; Tang, H.; Gmitter, F.G.; et al. Comparative Transcriptomic Analysis on Compatible/Incompatible Grafts in Citrus. Hortic. Res. 2022, 9, uhab072. [Google Scholar] [CrossRef]
- Li, D.; Han, F.; Liu, X.; Lv, H.; Li, L.; Tian, H.; Zhong, C. Localized Graft Incompatibility in Kiwifruit: Analysis of Homografts and Heterografts with Different Rootstock & Scion Combinations. Sci. Hortic. 2021, 283, 110080. [Google Scholar] [CrossRef]
- Pandey, D.; Shrestha, B.; Sapkota, M.; Banjade, S. Effect of Scion Varieties and Wrapping Materials on Success of Tongue Grafting in Kiwifruit (Actinidia deliciosa) in Dolakha, Nepal. Int. J. Sci. Res. Publ. (IJSRP) 2019, 9, 787–795. [Google Scholar] [CrossRef]
- Asahina, M.; Azuma, K.; Pitaksaringkarn, W.; Yamazaki, T.; Mitsuda, N.; Ohme-Takagi, M.; Yamaguchi, S.; Kamiya, Y.; Okada, K.; Nishimura, T.; et al. Spatially Selective Hormonal Control of RAP2.6L and ANAC071 Transcription Factors Involved in Tissue Reunion in Arabidopsis. Proc. Natl. Acad. Sci. USA 2011, 108, 16128–16132. [Google Scholar] [CrossRef] [PubMed]
- Pitaksaringkarn, W.; Matsuoka, K.; Asahina, M.; Miura, K.; Sage-Ono, K.; Ono, M.; Yokoyama, R.; Nishitani, K.; Ishii, T.; Iwai, H.; et al. XTH20 and XTH19 Regulated by ANAC071 under Auxin Flow Are Involved in Cell Proliferation in Incised Arabidopsis Inflorescence Stems. Plant J. 2014, 80, 604–614. [Google Scholar] [CrossRef]
- Notaguchi, M.; Kurotani, K.I.; Sato, Y.; Tabata, R.; Kawakatsu, Y.; Okayasu, K.; Sawai, Y.; Okada, R.; Asahina, M.; Ichihashi, Y.; et al. Cell-Cell Adhesion in Plant Grafting Is Facilitated by b-1,4-Glucanases. Science 2020, 369, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, C.W.; Gabel, A.; Hardcastle, T.J.; Robinson, S.; Miyashima, S.; Grosse, I.; Meyerowitz, E.M. Transcriptome Dynamics at Arabidopsis Graft Junctions Reveal an Intertissue Recognition Mechanism That Activates Vascular Regeneration. Proc. Natl. Acad. Sci. USA 2018, 115, E2447–E2456. [Google Scholar] [CrossRef]
- Zhang, A.; Matsuoka, K.; Kareem, A.; Robert, M.; Roszak, P.; Blob, B.; Bisht, A.; De Veylder, L.; Voiniciuc, C.; Asahina, M.; et al. Cell-Wall Damage Activates DOF Transcription Factors to Promote Wound Healing and Tissue Regeneration in Arabidopsis thaliana. Curr. Biol. 2022, 32, 1883–1894.e7. [Google Scholar] [CrossRef]
- Matsuoka, K.; Sato, R.; Matsukura, Y.; Kawajiri, Y.; Iino, H.; Nozawa, N.; Shibata, K.; Kondo, Y.; Satoh, S.; Asahina, M. Wound-Inducible ANAC071 and ANAC096 Transcription Factors Promote Cambial Cell Formation in Incised Arabidopsis Flowering Stems. Commun. Biol. 2021, 4, 369. [Google Scholar] [CrossRef]
- Heyman, J.; Cools, T.; Canher, B.; Shavialenka, S.; Traas, J.; Vercauteren, I.; Van Den Daele, H.; Persiau, G.; De Jaeger, G.; Sugimoto, K.; et al. The Heterodimeric Transcription Factor Complex ERF115–PAT1 Grants Regeneration Competence. Nat. Plants 2016, 2, 16165. [Google Scholar] [CrossRef]
- Ikeuchi, M.; Iwase, A.; Ito, T.; Tanaka, H.; Favero, D.S.; Kawamura, A.; Sakamoto, S.; Wakazaki, M.; Tameshige, T.; Fujii, H.; et al. Wound-Inducible WUSCHEL-RELATED HOMEOBOX 13 Is Required for Callus Growth and Organ Reconnection. Plant Physiol. 2022, 188, 425–441. [Google Scholar] [CrossRef]
- Sakakibara, K.; Reisewitz, P.; Aoyama, T.; Friedrich, T.; Ando, S.; Sato, Y.; Tamada, Y.; Nishiyama, T.; Hiwatashi, Y.; Kurata, T.; et al. WOX13-like Genes Are Required for Reprogramming of Leaf and Protoplast Cells into Stem Cells in the Moss Physcomitrella patens. Development 2014, 141, 1660–1670. [Google Scholar] [CrossRef]
- Liang, Y.; Heyman, J.; Xiang, Y.; Vandendriessche, W.; Canher, B.; Goeminne, G.; De Veylder, L. The Wound-Activated ERF15 Transcription Factor Drives Marchantia polymorpha Regeneration by Activating an Oxylipin Biosynthesis Feedback Loop. Sci. Adv. 2022, 8, 7737. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.S.; Chu, H.L.; Jin, S.H.; Huang, Y.J.; Wang, Z.J.; Chen, M.; Huang, J.Q. CDNA-AFLP Analysis of Gene Expression in Hickory (Carya cathayensis) during Graft Process. Tree Physiol. 2010, 30, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Feng, G.; Su, W.; Liu, Z.; Peng, F. Transcriptomic Analysis Provides Insights into Grafting Union Development in Pecan (Carya illinoinensis). Genes 2018, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Feng, G.; Su, W.; Liu, Z.; Peng, F. Identification of MiRNAs Associated with Graft Union Development in Pecan [Carya illinoinensis (Wangenh.) K. Koch]. Forests 2018, 9, 472. [Google Scholar] [CrossRef]
- Cookson, S.J.; Clemente Moreno, M.J.; Hevin, C.; Nyamba Mendome, L.Z.; Delrot, S.; Trossat-Magnin, C.; Ollat, N. Graft Union Formation in Grapevine Induces Transcriptional Changes Related to Cell Wall Modification, Wounding, Hormone Signalling, and Secondary Metabolism. J. Exp. Bot. 2013, 64, 2997–3008. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, M.; Qi, L.; Song, J.; Li, Q.; Wang, R. Differential Expression Analysis of Genes Related to Graft Union Healing in Pyrus ussuriensis Maxim by CDNA-AFLP. Sci. Hortic. 2017, 225, 700–706. [Google Scholar] [CrossRef]
- Irisarri, P.; Binczycki, P.; Errea, P.; Martens, H.J.; Pina, A. Oxidative Stress Associated with Rootstock–Scion Interactions in Pear/Quince Combinations during Early Stages of Graft Development. J. Plant Physiol. 2015, 176, 25–35. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, J.; Hu, F.; Qin, Y.; Wang, X.; Hu, G. Transcriptome Changes between Compatible and Incompatible Graft Combination of Litchi Chinensis by Digital Gene Expression Profile. Sci. Rep. 2017, 7, 3954. [Google Scholar] [CrossRef]
- He, W.; Xie, R.; Luo, L.; Chai, J.; Wang, H.; Wang, Y.; Chen, Q.; Wu, Z.; Yang, S.; Li, M.; et al. Comparative Transcriptomic Analysis of Inarching Invigorating Rootstock onto Incompatible Grafts in Citrus. Int. J. Mol. Sci. 2022, 23, 14523. [Google Scholar] [CrossRef]
- Febres, V.J.; Fadli, A.; Meyering, B.; Yu, F.; Bowman, K.D.; Chaparro, J.X.; Albrecht, U. Dissection of Transcriptional Events in Graft Incompatible Reactions of “Bearss” Lemon (Citrus limon) and “Valencia” Sweet Orange (C. sinensis) on a Novel Citrandarin (C. reticulata × Poncirus trifoliata) Rootstock. Front. Plant Sci. 2024, 15, 1421734. [Google Scholar] [CrossRef]
- Thomas, H.; Van den Broeck, L.; Spurney, R.; Sozzani, R.; Frank, M. Gene Regulatory Networks for Compatible versus Incompatible Grafts Identify a Role for SlWOX4 during Junction Formation. Plant Cell 2022, 34, 535–556. [Google Scholar] [CrossRef] [PubMed]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, M. Hormonal Signaling in Rootstock–Scion Interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Mattsson, J.; Ckurshumova, W.; Berleth, T. Auxin Signaling in Arabidopsis Leaf Vascular Development. Plant Physiol. 2003, 131, 1327–1339. [Google Scholar] [CrossRef]
- Tworkoski, T.; Fazio, G. Effects of Size-Controlling Apple Rootstocks on Growth, Abscisic Acid, and Hydraulic Conductivity of Scion of Different Vigor. Int. J. Fruit Sci. 2015, 15, 369–381. [Google Scholar] [CrossRef]
- Lordan, J.; Fazio, G.; Francescatto, P.; Robinson, T. Effects of Apple (Malus × domestica) Rootstocks on Scion Performance and Hormone Concentration. Sci. Hortic. 2017, 225, 96–105. [Google Scholar] [CrossRef]
- Williams, B.; Ahsan, M.U.; Frank, M.H. Getting to the Root of Grafting-Induced Traits. Curr. Opin. Plant Biol. 2021, 59, 101988. [Google Scholar] [CrossRef]
- Lordan, J.; Zazurca, L.; Maldonado, M.; Torguet, L.; Alegre, S.; Miarnau, X. Horticultural Performance of ‘Marinada’ and ‘Vairo’ Almond Cultivars Grown on a Genetically Diverse Set of Rootstocks. Sci. Hortic. 2019, 256, 108558. [Google Scholar] [CrossRef]
- Reig, G.; Salazar, A.; Zarrouk, O.; Forcada, C.F.i.; Val, J.; Moreno, M.Á. Long-Term Graft Compatibility Study of Peach-Almond Hybrid and Plum Based Rootstocks Budded with European and Japanese Plums. Sci. Hortic. 2019, 243, 392–400. [Google Scholar] [CrossRef]
- Reig, G.; Zarrouk, O.; Font i Forcada, C.; Moreno, M.Á. Anatomical Graft Compatibility Study between Apricot Cultivars and Different Plum Based Rootstocks. Sci. Hortic. 2018, 237, 67–73. [Google Scholar] [CrossRef]
- Raiol-Junior, L.L.; de Carvalho, E.V.; Moreira, A.S.; Marques, J.P.R.; Stuchi, E.S.; Peña, L.; Girardi, E.A. Graft Compatibility Classification within Aurantioideae Based on Biometric Traits and the Anatomy of Graft Union. Agriculture 2022, 12, 76. [Google Scholar] [CrossRef]
- Pina, A.; Irisarri, P.; Errea, P.; Zhebentyayeva, T. Mapping Quantitative Trait Loci Associated with Graft (In)Compatibility in Apricot (Prunus armeniaca L.). Front. Plant Sci. 2021, 12, 622906. [Google Scholar] [CrossRef]
- Nocito, F.F.; Espen, L.; Fedeli, C.; Lancilli, C.; Musacchi, S.; Serra, S.; Sansavini, S.; Cocucci, M.; Sacchi, G.A. Oxidative Stress and Senescence-like Status of Pear Calli Co-Cultured on Suspensions of Incompatible Quince Microcalli. Tree Physiol. 2010, 30, 450–458. [Google Scholar] [CrossRef]
- Pina, A.; Errea, P. Influence of Graft Incompatibility on Gene Expression and Enzymatic Activity of UDP-Glucose Pyrophosphorylase. Plant Sci. 2008, 174, 502–509. [Google Scholar] [CrossRef]
- Irisarri, P.; Zhebentyayeva, T.; Errea, P.; Pina, A. Differential Expression of Phenylalanine Ammonia Lyase (PAL) Genes Implies Distinct Roles in Development of Graft Incompatibility Symptoms in Prunus. Sci. Hortic. 2016, 204, 16–24. [Google Scholar] [CrossRef]
- Pereira, I.S.; Fachinello, J.C.; Antunes, L.E.C.; Errea, P.; Messias, R.S.; Pina, A. Expression of the 4-Coumarate:Coa Ligase Gene Family in Compatible and Incompatible Prunus Grafts. Acta Hortic. 2013, 976, 333–338. [Google Scholar] [CrossRef]
- Zarrouk, O.; Testillano, P.S.; Risueño, M.C.; Moreno, M.Á.; Gogorcena, Y. Changes in Cell/Tissue Organization and Peroxidase Activity as Markers for Early Detection of Graft Incompatibility in Peach/Plum Combinations. J. Am. Soc. Hortic. Sci. 2010, 135, 9–17. [Google Scholar] [CrossRef]
- Moreno, M.A.; Gaudillere, J.P.; Moing, A. Protein and Amino Acid Content in Compatible and Incompatible Peach/Plum Grafts. J. Hortic. Sci. 1994, 69, 955–962. [Google Scholar] [CrossRef]
- Prodhomme, D.; Valls Fonayet, J.; Hévin, C.; Franc, C.; Hilbert, G.; De Revel, G.; Richard, T.; Ollat, N.; Cookson, S.J. Metabolite Profiling during Graft Union Formation Reveals the Reprogramming of Primary Metabolism and the Induction of Stilbene Synthesis at the Graft Interface in Grapevine. BMC Plant Biol. 2019, 19, 599. [Google Scholar] [CrossRef]
- Assunção, M.; Pinheiro, J.; Cruz, S.; Brazão, J.; Queiroz, J.; Eiras Dias, J.E.; Canas, S. Gallic Acid, Sinapic Acid and Catechin as Potential Chemical Markers of Vitis Graft Success. Sci. Hortic. 2019, 246, 129–135. [Google Scholar] [CrossRef]
- Canas, S.; Assunção, M.; Brazão, J.; Zanol, G.; Eiras-Dias, J.E. Phenolic Compounds Involved in Grafting Incompatibility of Vitis Spp: Development and Validation of an Analytical Method for Their Quantification. Phytochem. Anal. 2015, 26, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Magalhães Filho, J.R.; Amaral, L.R.D.; Machado, D.F.S.P.; Medina, C.L.; Machado, E.C. Deficiência Hídrica, Trocas Gasosas e Crescimento de Raízes Em Laranjeira ‘Valência’ Sobre Dois Tipos de Porta-Enxertos. Bragantia 2008, 67, 75–82. [Google Scholar] [CrossRef]
- Pereira, I.d.S.; Pina, A.; Antunes, L.E.C.; Campos, Â.D.; Fachinello, J.C. Genotypic Differences in Cyanogenic Glycosides Levels of Compatible Prunus persica P. persica and Incompatible P. persica P. mume Combinations. Bragantia 2017, 77, 1–12. [Google Scholar] [CrossRef]
- Francescatto, P.; Pazzin, D.; Gazolla Neto, A.; Fachinello, J.C.; Giacobbo, C.L. Evaluation of Graft Compatibility between Quince Rootstocks and Pear Scions. Acta Hortic. 2010, 872, 253–260. [Google Scholar] [CrossRef]
- Morris, S.H.; Spillane, C. GM Directive Deficiencies in the European Union. The Current Framework for Regulating GM Crops in the EU Weakens the Precautionary Principle as a Policy Tool. EMBO Rep. 2008, 9, 500–504. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzandonakes, N.; Alston, J.M.; Bradford, K.J. Compliance Costs for Regulatory Approval of New Biotech Crops. In Regulating Agricultural Biotechnology: Economics and Policy; Springer: Boston, MA, USA, 2006; pp. 37–57. [Google Scholar] [CrossRef]
- Song, G.Q.; Walworth, A.; Lin, T.; Chen, Q.; Han, X.; Irina Zaharia, L.; Zhong, G.Y. VcFT-Induced Mobile Florigenic Signals in Transgenic and Transgrafted Blueberries. Hortic. Res. 2019, 6, 105. [Google Scholar] [CrossRef]
- Ye, J.; Geng, Y.; Zhang, B.; Mao, H.; Qu, J.; Chua, N.H. The Jatropha FT Ortholog Is a Systemic Signal Regulating Growth and Flowering Time. Biotechnol. Biofuels 2014, 7, 91. [Google Scholar] [CrossRef]
- Nazim Uddin, M.; Kim, J.Y. Intercellular and Systemic Spread of RNA and RNAi in Plants. Wiley Interdiscip. Rev. RNA 2013, 4, 279–293. [Google Scholar] [CrossRef]
- Lemgo, G.N.Y.; Sabbadini, S.; Pandolfini, T.; Mezzetti, B. Biosafety Considerations of RNAi-Mediated Virus Resistance in Fruit-Tree Cultivars and in Rootstock. Transgenic Res. 2013, 22, 1073–1088. [Google Scholar] [CrossRef]
- Bai, S.; Kasai, A.; Yamada, K.; Li, T.; Harada, T. A Mobile Signal Transported over a Long Distance Induces Systemic Transcriptional Gene Silencing in a Grafted Partner. J. Exp. Bot. 2011, 62, 4561–4570. [Google Scholar] [CrossRef]
- Zhao, D.; Song, G.Q. Rootstock-to-Scion Transfer of Transgene-Derived Small Interfering RNAs and Their Effect on Virus Resistance in Nontransgenic Sweet Cherry. Plant Biotechnol. J. 2014, 12, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Vigne, E.; Komar, V.; Fuchs, M. Field Safety Assessment of Recombination in Transgenic Grapevines Expressing the Coat Protein Gene of Grapevine Fanleaf Virus. Transgenic Res. 2004, 13, 165–179. [Google Scholar] [CrossRef]
- Sidorova, T.; Miroshnichenko, D.; Kirov, I.; Pushin, A.; Dolgov, S. Effect of Grafting on Viral Resistance of Non-Transgenic Plum Scion Combined with Transgenic PPV-Resistant Rootstock. Front. Plant Sci. 2021, 12, 621954. [Google Scholar] [CrossRef]
- Haroldsen, V.M.; Chi-Ham, C.L.; Bennett, A.B. Transgene Mobilization and Regulatory Uncertainty for Non-GE Fruit Products of Transgenic Rootstocks. J. Biotechnol. 2012, 161, 349–353. [Google Scholar] [CrossRef]
- Flachowsky, H.; Tränkner, C.; Szankowski, I.; Waidmann, S.; Hanke, M.V.; Treutter, D.; Fischer, T.C. RNA-Mediated Gene Silencing Signals Are Not Graft Transmissible from the Rootstock to the Scion in Greenhouse-Grown Apple Plants Malus sp. Int. J. Mol. Sci. 2012, 13, 9992–10009. [Google Scholar] [CrossRef] [PubMed]
Species | In Vitro Grafting Technique | Success Rate | Purpose of Study | Reference |
---|---|---|---|---|
Almond | Slit and wedge grafting | 100% | Develop a micrografting system for mass commercial production of selected cultivars | [22] |
Apple | Vertical slit wedge and horizontal | 35.76% | Access the potential use and applicability of micrografting to develop invitro grafted plantlets | [19] |
Wedge (V-shape) | 95% | Develop an efficient grafting method for the commercial production of apple | [20] | |
Apricot | Callus grafting | 60–70% | To identify the graft incompatibility at an early stage | [21] |
Citrus | Invert T-grafting | 75% | Validate multiple parameters in shoot tip grafting | [23] |
Tip grafting | 30–50% | Production of Indian ringspot virus-free plants | [24] | |
Grapevine | Wedge (V-shape) | 70–90% | Develop an in vitro micrografting procedure for grapevines to facilitate rapid diagnosis of grapevine corky bark | [15] |
75–85% | Screen for virus-tolerant graft combinations | [14] | ||
Kiwifruit | Cleft grafting | 50–73% | Develop an efficient grafting method to produce virus-free seedlings | [18] |
V-shape grafting | 100% | Evaluation of graft-compatibility at early stage | [17] | |
100% | Evaluation of drought tolerance in micrografts | [16] | ||
Mandarin Orange | Cleft and invert T graft | 57% | Production of Citrus Tristeza virus-free plants | [25] |
Pistachio | Wedge | 95% | Develop micrografting protocol | [26] |
Sour Cherry and Plum | Wedge (V-shape) | 88–96% | Study virus–host adaptation for plum pox virus | [27] |
Walnut | Vertical slit | 90% | Test multiple parameters of micrografting | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, I.; Cipriani, G.; De Mori, G. Bridging the Gap: Genetic Insights into Graft Compatibility for Enhanced Kiwifruit Production. Int. J. Mol. Sci. 2025, 26, 2925. https://doi.org/10.3390/ijms26072925
Ashraf I, Cipriani G, De Mori G. Bridging the Gap: Genetic Insights into Graft Compatibility for Enhanced Kiwifruit Production. International Journal of Molecular Sciences. 2025; 26(7):2925. https://doi.org/10.3390/ijms26072925
Chicago/Turabian StyleAshraf, Iqra, Guido Cipriani, and Gloria De Mori. 2025. "Bridging the Gap: Genetic Insights into Graft Compatibility for Enhanced Kiwifruit Production" International Journal of Molecular Sciences 26, no. 7: 2925. https://doi.org/10.3390/ijms26072925
APA StyleAshraf, I., Cipriani, G., & De Mori, G. (2025). Bridging the Gap: Genetic Insights into Graft Compatibility for Enhanced Kiwifruit Production. International Journal of Molecular Sciences, 26(7), 2925. https://doi.org/10.3390/ijms26072925