Validating Self-Reported Ad Recall as a Measure of Exposure to Digital Advertising: An Exploratory Analysis Using Ad Tracking Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Digital Exposure Measurement and Study Procedure
2.3. Measures
2.3.1. Outcomes
2.3.2. Total Tracked Digital Video Impressions
2.3.3. Covariates
Potential Past-Week Television Exposure
Demographic Characteristics
Weekly Media Use
2.4. Analysis Plan
3. Results
3.1. Participant Characteristics
3.2. Exposure Group Comparisons
3.3. Dose–Response between Digital Exposure and Recall
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allen, J.A.; Duke, J.C.; Davis, K.C.; Kim, A.E.; Nonnemaker, J.M.; Farrelly, M.C. Using mass media campaigns to reduce youth tobacco use: A review. Am. J. Health Promot. 2015, 30, e71–e82. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, M.A.; Loken, B.; Hornik, R.C. Use of mass media campaigns to change health behaviour. Lancet 2010, 376, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Maibach, E.; Parrott, R.L. Designing Health Messages: Approaches from Communication Theory and Public Health Practice; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Abroms, L.C.; Maibach, E.W. The Effectiveness of Mass Communication to Change Public Behavior. Annu. Rev. Public Health 2008, 29, 219–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, M.B.; Frank, L.B.; Zhao, N.; Gonzalez, C.; Thainiyom, P.; Murphy, S.T.; Ball-Rokeach, S.J. An Argument for Ecological Research and Intervention in Health Communication. J. Health Commun. 2016, 21, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Richard, L.; Gauvin, L.; Raine, K. Ecological Models Revisited: Their Uses and Evolution in Health Promotion Over Two Decades. Annu. Rev. Public Health 2011, 32, 307–326. [Google Scholar] [CrossRef]
- Farrelly, M.C.; Nonnemaker, J.; Davis, K.C.; Hussin, A. The influence of the national truth® campaign on smoking initiation. Am. J. Prev. Med. 2009, 36, 379–384. [Google Scholar] [CrossRef]
- Duke, J.C.; Farrelly, M.C.; Alexander, T.N.; MacMonegle, A.J.; Zhao, X.; Allen, J.A.; Delahanty, J.C.; Rao, P.; Nonnemaker, J. Effect of a national tobacco public education campaign on youth’s risk perceptions and beliefs about smoking. Am. J. Health Promot. 2018, 32, 1248–1256. [Google Scholar] [CrossRef]
- Kranzler, E.C.; Hornik, R.C. The Relationship Between Exogenous Exposure to “The Real Cost” Anti-smoking Campaign and Campaign-Targeted Beliefs. J. Health Commun. 2019, 24, 780–790. [Google Scholar] [CrossRef]
- McAfee, T.; Davis, K.C.; Alexander, R.L., Jr.; Pechacek, T.F.; Bunnell, R. Effect of the first federally funded US antismoking national media campaign. Lancet 2013, 382, 2003–2011. [Google Scholar] [CrossRef]
- Duke, J.C.; MacMonegle, A.J.; Nonnemaker, J.M.; Farrelly, M.C.; Delahanty, J.C.; Zhao, X.; Smith, A.A.; Rao, P.; Allen, J.A. Impact of The Real Cost Media Campaign on Youth Smoking Initiation. Am. J. Prev. Med. 2019, 57, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Duke, J.C.; Alexander, T.N.; Zhao, X.; Delahanty, J.C.; Allen, J.A.; MacMonegle, A.J.; Farrelly, M.C. Youth’s awareness of and reactions to The Real Cost national tobacco public education campaign. PLoS ONE 2015, 10, e0144827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hair, E.C.; Cantrell, J.; Pitzer, L.; Bennett, M.A.; Romberg, A.R.; Xiao, H.; Rath, J.M.; Halenar, M.J.; Vallone, D. Estimating the pathways of an antitobacco campaign. J. Adolesc. Health 2018, 63, 401–406. [Google Scholar] [PubMed]
- Farrelly, M.C.; Duke, J.C.; Nonnemaker, J.; MacMonegle, A.J.; Alexander, T.N.; Zhao, X.; Delahanty, J.C.; Rao, P.; Allen, J.A. Association between The Real Cost media campaign and smoking initiation among youths—United States, 2014–2016. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 47. [Google Scholar] [CrossRef] [PubMed]
- Vallone, D.; Cantrell, J.; Bennett, M.; Smith, A.; Rath, J.M.; Xiao, H.; Greenberg, M.; Hair, E.C. Evidence of the Impact of the truth FinishIt Campaign. Nicotine Tob. Res. 2017, 20, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Best Practices for Comprehensive Tobacco Control Programs—2014; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2014.
- Pew Research Center. Teens, Social Media, and Technology 2018; Pew Research Center: Washington, DC, USA, May 2018. [Google Scholar]
- Villanti, A.C.; Johnson, A.L.; Ilakkuvan, V.; Jacobs, M.A.; Graham, A.L.; Rath, J.M. Social media use and access to digital technology in US young adults in 2016. J. Med. Internet Res. 2017, 19, e196. [Google Scholar] [CrossRef]
- Pew Research Center. Share of U.S. Adults Using Social Media, Including Facebook, Is Mostly Unchanged Since 2018; Pew Research Center: Washington, DC, USA, April 2019. [Google Scholar]
- Farris, P.W.; Bendle, N.; Pfeifer, P.; Reibstein, D. Marketing Metrics: The definitive Guide to Measuring Marketing Performance; Pearson Education: London, UK, 2010. [Google Scholar]
- Evans, W.D.; Thomas, C.N.; Favatas, D.; Smyser, J.; Briggs, J. Digital Segmentation of Priority Populations in Public Health. Health Educ. Behav. 2019, 46 (Suppl. 2), 81S–89S. [Google Scholar] [CrossRef]
- Niederdeppe, J. Conceptual, empirical, and practical issues in developing valid measures of public communication campaign exposure. Commun. Methods Meas. 2014, 8, 138–161. [Google Scholar] [CrossRef]
- Biener, L.; McCallum-Keeler, G.; Nyman, A.L. Adults’ response to Massachusetts anti-tobacco television advertisements: Impact of viewer and advertisement characteristics. Tob. Control 2000, 9, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Slater, M.D. Operationalizing and analyzing exposure: The foundation of media effects research. J. Mass Commun. Q. 2004, 81, 168–183. [Google Scholar] [CrossRef]
- Cowling, D.W.; Modayil, M.V.; Stevens, C. Assessing the relationship between ad volume and awareness of a tobacco education media campaign. Tob. Control. 2010, 19 (Suppl. 1), i37–i42. [Google Scholar] [CrossRef] [Green Version]
- Loughney, M.; Eichholz, M.; Hagger, M. Exploring the effectiveness of advertising in the ABC.com full episode player. J. Advert. Res. 2008, 48, 320–328. [Google Scholar]
- Biener, L.; Wakefield, M.; Shiner, C.M.; Siegel, M. How broadcast volume and emotional content affect youth recall of anti-tobacco advertising. Am. J. Prev. Med. 2008, 35, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunlop, S.; Perez, D.; Cotter, T. The natural history of antismoking advertising recall: The influence of broadcasting parameters, emotional intensity and executional features. Tob. Control 2012, 23, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Niederdeppe, J. Assessing the validity of confirmed ad recall measures for public health communication campaign evaluation. J. Health Commun. 2005, 10, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Flosi, S.; Fulgoni, G.; Vollman, A. If an Advertisement Runs Online And No One Sees It, Is It Still an Ad?: Empirical Generalizations in Digital Advertising. J. Advert. Res. 2013, 53, 192–199. [Google Scholar] [CrossRef]
- Farrelly, M.C.; Davis, K.C.; Duke, J.; Messeri, P. Sustaining ‘truth’: Changes in youth tobacco attitudes and smoking intentions after 3 years of a national antismoking campaign. Health Educ. Res. 2008, 24, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Farrelly, M.C.; Davis, K.C.; Haviland, M.L.; Messeri, P.; Healton, C.G. Evidence of a dose-response relationship between “truth” antismoking ads and youth smoking prevalence. Am. J. Public Health 2005, 95, 425–431. [Google Scholar] [CrossRef]
- Vallone, D.; Greenberg, M.; Xiao, H.; Bennett, M.; Cantrell, J.; Rath, J.; Hair, E. The effect of branding to promote healthy behavior: Reducing tobacco use among youth and young adults. Int. J. Environ. Res. Public Health 2017, 14, 1517. [Google Scholar]
- Jerit, J.; Barabas, J.; Pollock, W.; Banducci, S.; Stevens, D.; Schoonvelde, M. Manipulated vs. Measured: Using an Experimental Benchmark to Investigate the Performance of Self-Reported Media Exposure. Commun. Methods Meas. 2016, 10, 99–114. [Google Scholar] [CrossRef] [Green Version]
Total | Exposure Groups | |||
---|---|---|---|---|
Control | Digital | p-value | ||
n = 964 | n = 506 | n = 458 | ||
Age | ||||
Mean (SD) | 28.3 (0.14) | 28.4 (0.19) | 28.1 (0.20) | 0.329 |
Gender Identity | ||||
Female | 697 (73.2) | 357 (71.7) | 340 (74.9) | 0.265 |
Male | 255 (26.8) | 141 (28.3) | 114 (25.1) | |
Race/Ethnicity | ||||
NH-White | 632 (65.8) | 332 (66.1) | 300 (65.5) | 0.958 |
NH-Black | 82 (8.5) | 45 (9.0) | 37 (8.1) | |
NH-Asian | 98 (10.2) | 49 (9.8) | 49 (10.7) | |
Hispanic | 107 (11.1) | 56 (11.2) | 51 (11.1) | |
NH-Other | 41 (4.3) | 20 (4.0) | 21 (4.6) | |
Household Income | ||||
<$25K | 104 (11.5) | 48 (10.0) | 56 (13.1) | 0.241 |
$25−50K | 181 (20.0) | 92 (19.2) | 89 (20.8) | |
>$50K | 622 (68.6) | 339 (70.8) | 283 (66.1) | |
Current E-Cigarette Use | ||||
No | 827 (85.8) | 420 (83.0) | 407 (88.9) | 0.009 |
Yes | 137 (14.2) | 86 (17.0) | 51 (11.1) | |
TV-OTS | ||||
No | 709 (73.5) | 357 (70.6) | 352 (76.9) | 0.027 |
Yes | 255 (26.5) | 149 (29.4) | 106 (23.1) | |
Weekly TV | ||||
No use | 24 (2.5) | 12 (2.4) | 12 (2.6) | 0.759 |
<5 h | 158 (16.4) | 77 (15.2) | 81 (17.7) | |
5−10 h | 310 (32.2) | 163 (32.2) | 147 (32.1) | |
11−25 h | 350 (36.3) | 192 (37.9) | 158 (34.5) | |
26+ h | 122 (12.7) | 62 (12.3) | 60 (13.1) | |
Weekly Social Media | ||||
No use | 38 (3.9) | 22 (4.3) | 16 (3.5) | 0.858 |
<5 h | 208 (21.6) | 113 (22.3) | 95 (20.7) | |
5−10 h | 335 (34.8) | 170 (33.6) | 165 (36.0) | |
11−25 h | 261 (27.1) | 135 (26.7) | 126 (27.5) | |
26+ h | 122 (12.7) | 66 (13.0) | 56 (12.2) | |
Ad Recall | ||||
No | 593 (61.5) | 356 (70.4) | 237 (51.8) | <0.001 |
Yes | 371 (38.5) | 150 (29.6) | 221 (48.3) |
OR | 95% CI | |
---|---|---|
Exposure | ||
Control | Ref | |
Digital | 2.52 *** | 1.87–3.40 |
TV-OTS | ||
No | Ref | |
Yes | 2.23 *** | 1.59–3.12 |
Weekly TV | ||
No use | 0.69 | 0.23–2.09 |
<5 h | Ref | |
5−10 h | 1.02 | 0.64–1.62 |
11−25 h | 1.44 | 0.91–2.30 |
26+ h | 1.14 | 0.64–2.03 |
Weekly Social Media | ||
No use | 0.82 | 0.34–1.97 |
<5 h | Ref | |
5−10 h | 1.14 | 0.76–1.72 |
11−25 h | 0.80 | 0.52–1.25 |
26+ h | 0.98 | 0.57–1.70 |
Current E-Cigarette Use | ||
No | Ref | |
Yes | 2.02 ** | 1.32–3.10 |
Age | ||
Years | 0.89 *** | 0.85–0.92 |
Gender | ||
Female | Ref | |
Male | 1.02 | 0.73–1.43 |
Race/Ethnicity | ||
NH-White | Ref | |
Hispanic | 1.50 | 0.94–2.38 |
NH-Black | 0.80 | 0.46–1.38 |
NH-Asian | 0.73 | 0.44–1.23 |
NH-Other | 1.01 | 0.47–2.20 |
Household Income | ||
<$25K | 1.34 | 0.83–2.18 |
$25−50K | 1.38 | 0.95–2.00 |
>$50K | Ref |
OR | 95% CI | |
---|---|---|
Digital Exposure | ||
Total Impressions | 1.08 * | 1.01–1.16 |
TV-OTS | ||
No | Ref | |
Yes | 1.84 ** | 1.17–2.89 |
Weekly TV | ||
No use | 0.72 | 0.18–2.81 |
<5 h | Ref | |
5−10 h | 1.35 | 0.75–2.44 |
11−25 h | 1.70 | 0.94–3.07 |
>26 h | 1.91 | 0.90–4.05 |
Weekly Social Media | ||
No use | 0.78 | 0.21–2.91 |
<5 h | Ref | |
5−10 h | 1.04 | 0.61–1.77 |
11−25 h | 0.66 | 0.37–1.21 |
26+ h | 0.90 | 0.43–1.88 |
Current E-Cigarette Use | ||
No | Ref | |
Yes | 0.95 | 0.51–1.77 |
Age | ||
Years | 0.91 *** | 0.87–0.96 |
Gender | ||
Female | Ref | |
Male | 0.76 | 0.48–1.98 |
Race/Ethnicity | ||
NH-White | Ref | |
Hispanic | 1.07 | 0.60–1.91 |
NH-Black | 0.93 | 0.44–1.98 |
NH-Asian | 0.92 | 0.48–1.76 |
NH-Other | 2.44 | 0.96–6.22 |
Household Income | ||
<$25K | 1.22 | 0.66–2.27 |
$25−50K | 1.45 | 0.90–2.34 |
>$50K | Ref |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romberg, A.R.; Bennett, M.; Tulsiani, S.; Simard, B.; Kreslake, J.M.; Favatas, D.; Vallone, D.M.; Hair, E.C. Validating Self-Reported Ad Recall as a Measure of Exposure to Digital Advertising: An Exploratory Analysis Using Ad Tracking Methodology. Int. J. Environ. Res. Public Health 2020, 17, 2185. https://doi.org/10.3390/ijerph17072185
Romberg AR, Bennett M, Tulsiani S, Simard B, Kreslake JM, Favatas D, Vallone DM, Hair EC. Validating Self-Reported Ad Recall as a Measure of Exposure to Digital Advertising: An Exploratory Analysis Using Ad Tracking Methodology. International Journal of Environmental Research and Public Health. 2020; 17(7):2185. https://doi.org/10.3390/ijerph17072185
Chicago/Turabian StyleRomberg, Alexa R., Morgane Bennett, Shreya Tulsiani, Bethany Simard, Jennifer M. Kreslake, Dionisios Favatas, Donna M. Vallone, and Elizabeth C. Hair. 2020. "Validating Self-Reported Ad Recall as a Measure of Exposure to Digital Advertising: An Exploratory Analysis Using Ad Tracking Methodology" International Journal of Environmental Research and Public Health 17, no. 7: 2185. https://doi.org/10.3390/ijerph17072185
APA StyleRomberg, A. R., Bennett, M., Tulsiani, S., Simard, B., Kreslake, J. M., Favatas, D., Vallone, D. M., & Hair, E. C. (2020). Validating Self-Reported Ad Recall as a Measure of Exposure to Digital Advertising: An Exploratory Analysis Using Ad Tracking Methodology. International Journal of Environmental Research and Public Health, 17(7), 2185. https://doi.org/10.3390/ijerph17072185