Special Issue "Restore Degraded Marine Coastal Areas in the Mediterranean Sea"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Oceans and Coastal Zones".

Deadline for manuscript submissions: 30 June 2021.

Special Issue Editors

Prof. Dr. Sebastiano Calvo
E-Mail Website
Guest Editor
Department of Hearth and Sea Sciences, University of Palermo, Viale delle Scienze Edificio 16 - 90128 Palermo, Sicily, Italy
Interests: aquatic ecology and biology; mapping; monitoring; conservation and restoration of seagrasses
Prof. Dr. Agostino Tomasello
E-Mail Website
Guest Editor
Department of Hearth and Sea Sciences, University of Palermo, Viale delle Scienze Edificio 16 - 90128 Palermo, Sicily, Italy
Interests: ecology; biology; mapping; monitoring; restoration of seagrasses

Special Issue Information

Dear Colleagues,

The Mediterranean Basin is considered one of the world most important hot spot for marine biodiversity. In the last century climate change combined with local anthropogenic stressors led to mortalities and dramatic loss of indigenous essential habitat forming species and associated biodiversity. Considering the relatively long time resilience of many of these species, active restoration appeared as one of the key actions to counteract biodiversity losses. In recent years there has been an upsurge in researches aimed at restoring degraded marine environments which has led to a proliferation of strategies and methodologies proposals attempted to enhance the effectiveness of restoration plans. However, the experiences carried out until now showed a very high variability of outcomes, depending on the species, the methodologies employed and the different environmental conditions encountered, making the issue of marine restoration still rather debated and far from the definition of a fully shared and standardized approach. Additional efforts are clear need to fill this gap, as recently recommended  by United Nations (UN) General Assembly that declared 2021–2030 the "UN Decade on Ecosystem Restoration", and soon after by the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions with “EU Biodiversity Strategy for 2030” COM(2020) 380 final.

This special issue aims to collect recent experiences dealing with restoration of the most important habitats of Mediterranean Sea. Review or research papers concerning restoration performance (success and failures), technologies employed, development of mapping and monitoring protocols and advances in biological, ecological and socio-economic knowledge applied to restoration are welcome.


Prof. Dr. Sebastiano Calvo
Prof. Dr. Agostino Tomasello
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Transplantation
  • Monitoring
  • Seabed mapping
  • Ecological restoration,
  • Evaluation
  • Restoration planning
  • Habitat recovery
  • Marine coastal habitats
  • Habitat formers

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Performance Assessment of Posidonia oceanica (L.) Delile Restoration Experiment on Dead matte Twelve Years after Planting—Structural and Functional Meadow Features
Water 2021, 13(5), 724; https://doi.org/10.3390/w13050724 - 07 Mar 2021
Viewed by 612
Abstract
Following the restoration of natural conditions by reducing human pressures, reforestation is currently considered a possible option to accelerate the recovery of seagrass habitats. Long-term monitoring programs theoretically represent an ideal solution to assess whether a reforestation plan has produced the desired results. [...] Read more.
Following the restoration of natural conditions by reducing human pressures, reforestation is currently considered a possible option to accelerate the recovery of seagrass habitats. Long-term monitoring programs theoretically represent an ideal solution to assess whether a reforestation plan has produced the desired results. Here, we report on the performance of a 20 m2 patch of Posidonia oceanica transplanted on dead matte twelve years after transplantation in the Gulf of Palermo, northwestern Sicily. Photo mosaic performed in the area allowed us to detect 23 transplanted patches of both regular and irregular shape, ranging from 0.1 to 2.7 m2 and an overall surface close to 19 m2. Meadow density was 331.6 ± 17.7 shoot m−2 (currently five times higher than the initial value of 66 shoots m−2), and it did not show statistical differences from a close by natural meadow (331.2 ± 14.9). Total primary production, estimated by lepidochronology, varied from 333.0 to 332.7 g dw m2/year, at the transplanted and natural stand, respectively. These results suggest that complete restoration of P. oceanica on dead matte is possible in a relatively short time (a decade), thus representing a good starting point for upscaling the recovery of the degraded meadows in the area. Full article
(This article belongs to the Special Issue Restore Degraded Marine Coastal Areas in the Mediterranean Sea)
Show Figures

Figure 1

Article
Environmental Engineering Techniques to Restore Degraded Posidonia oceanica Meadows
Water 2021, 13(5), 661; https://doi.org/10.3390/w13050661 - 28 Feb 2021
Viewed by 842
Abstract
Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study [...] Read more.
Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat. Full article
(This article belongs to the Special Issue Restore Degraded Marine Coastal Areas in the Mediterranean Sea)
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical Review of Effectiveness and Ethical Issues
Water 2021, 13(8), 1034; https://doi.org/10.3390/w13081034 - 09 Apr 2021
Viewed by 500
Abstract
Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor [...] Read more.
Some species of seagrasses (e.g., Zostera marina and Posidonia oceanica) have declined in the Mediterranean, at least locally. Others are progressing, helped by sea warming, such as Cymodocea nodosa and the non-native Halophila stipulacea. The decline of one seagrass can favor another seagrass. All in all, the decline of seagrasses could be less extensive and less general than claimed by some authors. Natural recolonization (cuttings and seedlings) has been more rapid and more widespread than was thought in the 20th century; however, it is sometimes insufficient, which justifies transplanting operations. Many techniques have been proposed to restore Mediterranean seagrass meadows. However, setting aside the short-term failure or half-success of experimental operations, long-term monitoring has usually been lacking, suggesting that possible failures were considered not worthy of a scientific paper. Many transplanting operations (e.g., P. oceanica) have been carried out at sites where the species had never previously been present. Replacing the natural ecosystem (e.g., sandy bottoms, sublittoral reefs) with P. oceanica is obviously inappropriate in most cases. This presupposes ignorance of the fact that the diversity of ecosystems is one of the bases of the biodiversity concept. In order to prevent the possibility of seagrass transplanting from being misused as a pretext for further destruction, a guide for the proper conduct of transplanting is proposed. Full article
(This article belongs to the Special Issue Restore Degraded Marine Coastal Areas in the Mediterranean Sea)
Show Figures

Figure 1

Review
The Genetic Component of Seagrass Restoration: What We Know and the Way Forwards
Water 2021, 13(6), 829; https://doi.org/10.3390/w13060829 - 18 Mar 2021
Cited by 1 | Viewed by 772
Abstract
Seagrasses are marine flowering plants providing key ecological services and functions in coasts and estuaries across the globe. Increased environmental changes fueled by human activities are affecting their existence, compromising natural habitats and ecosystems’ biodiversity and functioning. In this context, restoration of disturbed [...] Read more.
Seagrasses are marine flowering plants providing key ecological services and functions in coasts and estuaries across the globe. Increased environmental changes fueled by human activities are affecting their existence, compromising natural habitats and ecosystems’ biodiversity and functioning. In this context, restoration of disturbed seagrass environments has become a worldwide priority to reverse ecosystem degradation and to recover ecosystem functionality and associated services. Despite the proven importance of genetic research to perform successful restoration projects, this aspect has often been overlooked in seagrass restoration. Here, we aimed to provide a comprehensive perspective of genetic aspects related to seagrass restoration. To this end, we first reviewed the importance of studying the genetic diversity and population structure of target seagrass populations; then, we discussed the pros and cons of different approaches used to restore and/or reinforce degraded populations. In general, the collection of genetic information and the development of connectivity maps are critical steps for any seagrass restoration activity. Traditionally, the selection of donor population preferred the use of local gene pools, thought to be the best adapted to current conditions. However, in the face of rapid ocean changes, alternative approaches such as the use of climate-adjusted or admixture genotypes might provide more sustainable options to secure the survival of restored meadows. Also, we discussed different transplantation strategies applied in seagrasses and emphasized the importance of long-term seagrass monitoring in restoration. The newly developed information on epigenetics as well as the application of assisted evolution strategies were also explored. Finally, a view of legal and ethical issues related to national and international restoration management is included, highlighting improvements and potential new directions to integrate with the genetic assessment. We concluded that a good restoration effort should incorporate: (1) a good understanding of the genetic structure of both donors and populations being restored; (2) the analysis of local environmental conditions and disturbances that affect the site to be restored; (3) the analysis of local adaptation constraints influencing the performances of donor populations and native plants; (4) the integration of distribution/connectivity maps with genetic information and environmental factors relative to the target seagrass populations; (5) the planning of long-term monitoring programs to assess the performance of the restored populations. The inclusion of epigenetic knowledge and the development of assisted evolution programs are strongly hoped for the future. Full article
(This article belongs to the Special Issue Restore Degraded Marine Coastal Areas in the Mediterranean Sea)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

1. The genetic component of seagrass restoration: what we know and the way forwards

Jessica Pazzaglia, Hung Manh Nguyen, Alex Santillán-Sarmiento1, Miriam Ruocco1, Emanuela Dattolo1, Lázaro Marín-Guirao1,2†, Gabriele Procaccini1,†*

1   Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] (J.P.); [email protected] (H.M.N.); [email protected] (A.S.S.); [email protected] (M.R.); [email protected] (E.D.)

2   Seagrass Ecology Group, Oceanographic Centre of Murcia, Spanish Institute of Oceanography, C/ Varadero, s30740 San Pedro del Pinatar, Murcia, Spain; [email protected]

*   Correspondence: [email protected] ; Tel.: +39 081 5833363

  • These authors have contributed equally to the work

These authors have contributed equally to the work

Abstract: Seagrasses are marine flowering plants providing key ecological services and functions for the entire coastal marine environment. Increased environmental changes, both of natural and human origin, are affecting their existence, compromising natural habitats and ecosystems biodiversity and functions. In this context, restoration and preservation of disturbed environments is a priority worldwide, in order to turn back ecosystem degradation and species extinction. Besides the recognition of the importance of genetic assessment to perform a successful restoration project, it has been rarely taken in to consideration in seagrass restoration and preservation activities. In general, the genetic divergence between donor and transplantation sites, genetic polymorphism of transplanted material and local adaptation are some of the issues to consider. Genetic knowledge, for example, is required for the correct selection of the initial gene pool from the donor site, avoiding potential negative effects that can lead to genetic erosion processes. These issues can contribute also to develop monitoring plans, necessary to guarantee a successful reintroduction. Here, we first review genetic studies on seagrasses with special attention on seagrass restoration. Furthermore, legal and ethical issues, related to national and international restoration managements, are also discussed highlighting improvements and potential new directions to integrate in the genetic assessment. We conclude by discussing novel techniques to apply in genetic studies in seagrasses and, more importantly, their applications to the success of future seagrass restoration.

2. Restoration of seagrass meadows in the Mediterranean Sea: a critical review of effectiveness and ethical issues

Charles-François Boudouresque, Aurélie Blanfuné, Gérard Pergent and Thierry Thibaut.

 

3. Marine seagrasses transplantation in lagoon and confined Adriatic environments: methods and results

Summary: The anthropogenic pressures of the twentieth century have seriously endangered the Mediterranean coastal zone; as a consequence, marine seagrass habitats have strongly retreated, mostly of Posidonia oceanica. For this reason, over time, restoration programs have been put in place through transplantation, with different success. These actions have been conducted to a lesser extent with other Mediterranean marine phanerogams. The results of numerous transplant operations conducted in the Northern Adriatic Sea with P. oceanica, Cymodocea nodosa, Zostera marina and Z. noltei are presented and compared, taking also into account the extensive meadows of the last three macrophytes mentioned, along the North Adriatic coasts and lagoons.

Back to TopTop