Special Issue "Insights into Organic Carbon, Iron, Metals and Phosphorus Dynamics in Freshwaters"

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Quality and Contamination".

Deadline for manuscript submissions: closed (31 March 2022) | Viewed by 16572

Special Issue Editor

Dr. Liudmila S. Shirokova
E-Mail Website
Guest Editor
Georesources and Environnement Toulouse GET UMR 5563 CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
Interests: environment; biodiversity; water quality; environmental impact assessment; lakes, rivers, microorganisms, greenhouse gases, biogeochemical cycles
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Organic carbon (OC), iron (Fe), and phosphorus (P) are three key aquatic components that largely determine the biotic and abiotic functioning of freshwater systems, including groundwater, soil water, lakes, rivers, and their estuaries.

Over the past decade, there has been increasing interest regarding the elevation in organic carbon and iron concentrations in freshwaters in relation to the so-called “browning” effect, caused by climate warming and changes in anthropogenic pressure. As for phosphorus, it is a vital element for all aquatic ecosystems and its aquatic biogeochemical cycle now undergoes sizable changes linked to eutrophication, invasive species development, and transformations between organic and inorganic forms.

This Special Issue welcomes articles dedicated to all aspects of the behavior of organic carbon, phosphorus, iron (and other related metals) in a broad range of freshwater environments, from soil solutions and groundwaters to ponds, lakes, rivers, and their riparian zones and estuaries. Of special interest are papers dealing with the fate of OC, P, and Fe due to the impact of climate change and human activities on aquatic ecosystems, including both anthropogenically altered and pristine regions. Works dealing with biogeochemical cycles in aquatic ecosystems mostly affected by climate change and exhibiting high C and Fe concentrations (boreal and subarctic rivers and lakes, wetlands, floodplains) are perfectly suited for this Special Issue.

Papers on field, experimental, and modeling studies related to dissolved and particulate OC, Fe, and P may focus on climate warming, permafrost thaw, floods, eutrophication, acidification, pollution, and the recovery of aquatic environments, though other contexts are also of interest.

Dr. Liudmila S. Shirokova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lakes
  • rivers
  • groundwater
  • soil solutions
  • biogeochemical cycles
  • eutrophication
  • acidification
  • pollution
  • climate warming
  • organic carbon
  • phosphorus
  • iron
  • trace metal

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Editorial
Insights into Organic Carbon, Iron, Metals and Phosphorus Dynamics in Freshwaters
Water 2022, 14(18), 2863; https://doi.org/10.3390/w14182863 - 14 Sep 2022
Viewed by 548
Abstract
Organic carbon (OC), iron (Fe), metal, and phosphorus (P) are key aquatic components that largely determine the biotic and abiotic functioning of freshwater systems, including groundwater, soil water, lakes, rivers, and their estuaries [...] Full article

Research

Jump to: Editorial, Review

Article
Hydrochemistry of Medium-Size Pristine Rivers in Boreal and Subarctic Zone: Disentangling Effect of Landscape Parameters across a Permafrost, Climate, and Vegetation Gradient
Water 2022, 14(14), 2250; https://doi.org/10.3390/w14142250 - 18 Jul 2022
Cited by 2 | Viewed by 744
Abstract
We studied two medium size pristine rivers (Taz and Ket) of boreal and subarctic zone, western Siberia, for a better understanding of the environmental factors controlling major and trace element transport in riverine systems. Our main objective was to test the impact of [...] Read more.
We studied two medium size pristine rivers (Taz and Ket) of boreal and subarctic zone, western Siberia, for a better understanding of the environmental factors controlling major and trace element transport in riverine systems. Our main objective was to test the impact of climate and land cover parameters (permafrost, vegetation, water coverage, soil organic carbon, and lithology) on carbon, major and trace element concentration in the main stem and tributaries of each river separately and when considering them together, across contrasting climate/permafrost zones. In the permafrost-bearing Taz River (main stem and 17 tributaries), sizable control of vegetation on element concentration was revealed. In particular, light coniferous and broadleaf mixed forest controlled DOC, and some nutrients (NO2, NO3, Mn, Fe, Mo, Cd, Ba), deciduous needle-leaf forest positively correlated with macronutrients (PO4, Ptot, Si, Mg, P, Ca) and Sr, and dark needle-leaf forest impacted Ntot, Al, and Rb. Organic C stock in the upper 30–100 cm soil positively correlated with Be, Mn, Co, Mo, Cd, Sb, and Bi. In the Ket River basin (large right tributary of the Ob River) and its 26 tributaries, we revealed a correlation between the phytomass stock at the watershed and alkaline-earth metals and U concentration in the river water. This control was weakly pronounced during high-water period (spring flood) and mostly occurred during summer low water period. Pairwise correlations between elements in both river systems demonstrated two group of solutes—(1) positively correlated with DIC (Si, alkalis (Li, Na), alkaline-earth metals (Mg, Ca, Sr, Ba), and U), this link originated from groundwater feeding of the river when the labile elements were leached from soluble minerals such as carbonates; and (2) elements positively correlated with DOC (trivalent, tetravalent, and other hydrolysates, Se and Cs). This group reflected mobilization from upper silicate mineral soil profile and plant litter, which was strongly facilitated by element colloidal status, notably for low-mobile geochemical tracers. The observed DOC vs DIC control on riverine transport of low-soluble and highly mobile elements, respectively, is also consistent with former observations in both river and lake waters of the WSL as well as in soil waters and permafrost ice. A principal component analysis demonstrated three main factors potentially controlling the major and TE concentrations. The first factor, responsible for 26% of overall variation, included aluminum and other low mobile trivalent and tetravalent hydrolysates, Be, Cr, Nb, and elements strongly complexed with DOM such as Cu and Se. This factor presumably reflected the presence of organo-mineral colloids, and it was positively affected by the proportion of forest and organic C in soils of the watershed. The second factor (14% variation) likely represented a combined effect of productive litter in larch forest growing on carbonate-rich rocks and groundwater feeding of the rivers and acted on labile Na, Mg, Si, Ca, P, and Fe(II), but also DOC, micronutrients (Zn, Rb, Ba), and phytomass at the watershed. Via applying a substituting space for time approach for south-north gradient of studied river basins, we predict that climate warming in northern rivers may double or triple the concentration of DIC, Ca, Sr, U, but also increase the concentration of DOC, POC, and nutrients. Full article
Show Figures

Figure 1

Article
How to Implement User-Friendly BLMs in the Absence of DOC Monitoring Data: A Case Study on Bulgarian Surface Waters
Water 2022, 14(2), 246; https://doi.org/10.3390/w14020246 - 15 Jan 2022
Cited by 2 | Viewed by 734
Abstract
The metal bioavailability concept is implemented in the Water Framework Directive (WFD) compliance assessment. The bioavailability assessment is usually performed by the application of user-friendly Biotic Ligand Models (BLMs), which require dissolved metal concentrations to be used with the “matching” data of the [...] Read more.
The metal bioavailability concept is implemented in the Water Framework Directive (WFD) compliance assessment. The bioavailability assessment is usually performed by the application of user-friendly Biotic Ligand Models (BLMs), which require dissolved metal concentrations to be used with the “matching” data of the supporting physicochemical parameters of dissolved organic carbon (DOC), pH and Cadissolved. Many national surface water monitoring networks do not have sufficient matching data records, especially for DOC. In this study, different approaches for dealing with the missing DOC data are presented: substitution using historical data; the appropriate percentile of DOC concentrations; and combinations of the two. The applicability of the three following proposed substitution approaches is verified by comparison with the available matching data: (i) calculations from available TOC data; (ii) the 25th percentile of the joint Bulgarian monitoring network DOC data (measured and calculated by TOC); and (iii) the 25th percentile of the calculated DOC from the matching TOC data for the investigated surface water body (SWB). The application of user-friendly BLMs (BIO-MET, M-BAT and PNEC Pro) to 13 surface water bodies (3 reservoirs and 10 rivers) in the Bulgarian surface waters monitoring network outlines that the suitability of the substitution approaches decreases in order: DOC calculated by TOC > the use of the 25th percentile of the data for respective SWB > the use of the 25th percentile of the Bulgarian monitoring network data. Additionally, BIO-MET is the most appropriate tool for the bioavailability assessment of Cu, Zn and Pb in Bulgarian surface water bodies. Full article
Show Figures

Figure 1

Article
Dissolved Metal (Fe, Mn, Zn, Ni, Cu, Co, Cd, Pb) and Metalloid (As, Sb) in Snow Water across a 2800 km Latitudinal Profile of Western Siberia: Impact of Local Pollution and Global Transfer
Water 2022, 14(1), 94; https://doi.org/10.3390/w14010094 - 04 Jan 2022
Cited by 4 | Viewed by 782
Abstract
Snow cover is known to be an efficient and unique natural archive of atmospheric input and an indicator of ecosystem status. In high latitude regions, thawing of snow provides a sizable contribution of dissolved trace metals to the hydrological network. Towards a better [...] Read more.
Snow cover is known to be an efficient and unique natural archive of atmospheric input and an indicator of ecosystem status. In high latitude regions, thawing of snow provides a sizable contribution of dissolved trace metals to the hydrological network. Towards a better understanding of natural and anthropogenic control on heavy metals and metalloid input from the atmosphere to the inland waters of Siberian arctic and subarctic regions, we measured chemical composition of dissolved (<0.22 µm) fractions of snow across a 2800 km south–north gradient in Western Siberia. Iron, Mn, Co, Ni, and Cd demonstrated sizable (by a factor of 4–7) decrease in concentration northward, which can be explained by a decrease in overall population density and the influence of dry aerosol deposition. Many elements (Mn, Ni, Cu, Cd, Pb, As, and Sb) exhibited a prominent local maximum (a factor of 2–3) in the zone of intensive oil and gas extraction (61–62° N latitudinal belt), which can be linked to gas flaring and fly ash deposition. Overall, the snow water chemical composition reflected both local and global (long-range) atmospheric transfer processes. Based on mass balance calculation, we demonstrate that the winter time atmospheric input represents sizable contribution to the riverine export fluxes of dissolved (<0.45 µm) Mn, Co, Zn, Cd, Pb, and Sb during springtime and can appreciably shape the hydrochemical composition of the Ob River main stem and tributaries. Full article
Show Figures

Figure 1

Article
Iron, Phosphorus and Trace Elements in Mussels’ Shells, Water, and Bottom Sediments from the Severnaya Dvina and the Onega River Basins (Northwestern Russia)
Water 2021, 13(22), 3227; https://doi.org/10.3390/w13223227 - 14 Nov 2021
Cited by 2 | Viewed by 1182
Abstract
Trace elements in freshwater bivalve shells are widely used for reconstructing long-term changes in the riverine environments. However, Northern Eurasian regions, notably the European Russian North, susceptible to strong environmental impact via both local pollution and climate warming, are poorly studied. This work [...] Read more.
Trace elements in freshwater bivalve shells are widely used for reconstructing long-term changes in the riverine environments. However, Northern Eurasian regions, notably the European Russian North, susceptible to strong environmental impact via both local pollution and climate warming, are poorly studied. This work reports new data on trace elements accumulation by widespread species of freshwater mussels Unio spp. and Anodonta anatina in the Severnaya Dvina and the Onega River Basin, the two largest subarctic river basins in the Northeastern Europe. We revealed that iron and phosphorous accumulation in Unio spp. and Anodonta anatina shells have a strong relationship with a distance from the mouth of the studied river (the Severnaya Dvina). Based on multiparametric statistics comprising chemical composition of shells, water, and sediments, we demonstrated that the accumulation of elements in the shell depends on the environment of the biotope. Differences in the elemental composition of shells between different taxa are associated with ecological preferences of certain species to the substrate. The results set new constraints for the use of freshwater mussels’ shells for monitoring riverine environments and performing paleo-reconstructions. Full article
Show Figures

Figure 1

Article
Landscape, Soil, Lithology, Climate and Permafrost Control on Dissolved Carbon, Major and Trace Elements in the Ob River, Western Siberia
Water 2021, 13(22), 3189; https://doi.org/10.3390/w13223189 - 11 Nov 2021
Cited by 4 | Viewed by 1295
Abstract
In order to foresee possible changes in the elementary composition of Arctic river waters, complex studies with extensive spatial coverage, including gradients in climate and landscape parameters, are needed. Here, we used the unique position of the Ob River, draining through the vast [...] Read more.
In order to foresee possible changes in the elementary composition of Arctic river waters, complex studies with extensive spatial coverage, including gradients in climate and landscape parameters, are needed. Here, we used the unique position of the Ob River, draining through the vast partially frozen peatlands of the western Siberia Lowland and encompassing a sizable gradient of climate, permafrost, vegetation, soils and Quaternary deposits, to assess a snap-shot (8–23 July 2016) concentration of all major and trace elements in the main stem (~3000 km transect from the Tom River confluence in the south to Salekhard in the north) and its 11 tributaries. During the studied period, corresponding to the end of the spring flood-summer baseflow, there was a systematic decrease, from the south to the north, of Dissolved Inorganic Carbon (DIC), Specific Conductivity, Ca and some labile trace elements (Mo, W and U). In contrast, Dissolved Organic Carbon (DOC), Fe, P, divalent metals (Mn, Ni, Cu, Co and Pb) and low mobile trace elements (Y, Nb, REEs, Ti, Zr, Hf and Th) sizably increased their concentration northward. The observed latitudinal pattern in element concentrations can be explained by progressive disconnection of groundwaters from the main river and its tributaries due to a northward increase in the permafrost coverage. A northward increase in bog versus forest coverage and an increase in DOC and Fe export enhanced the mobilization of insoluble, low mobile elements which were present in organo-ferric colloids (1 kDa—0.45 µm), as confirmed by an in-situ dialysis size fractionation procedure. The chemical composition of the sampled mainstream and tributaries demonstrated significant (p < 0.01) control of latitude of the sampling point; permafrost coverage; proportion of bogs, lakes and floodplain coverage and lacustrine and fluvio-glacial Quaternary deposits of the watershed. This impact was mostly pronounced on DOC, Fe, P, divalent metals (Mn, Co, Ni, Cu and Pb), Rb and low mobile lithogenic trace elements (Al, Ti, Cr, Y, Zr, Nb, REEs, Hf and Th). The pH and concentrations of soluble, highly mobile elements (DIC, SO4, Ca, Sr, Ba, Mo, Sb, W and U) positively correlated with the proportion of forest, loesses, eluvial, eolian, and fluvial Quaternary deposits on the watershed. Consistent with these correlations, a Principal Component Analysis demonstrated two main factors explaining the variability of major and trace element concentration in the Ob River main stem and tributaries. The DOC, Fe, divalent metals and trivalent and tetravalent trace elements were presumably controlled by a northward increase in permafrost, floodplain, bogs, lakes and lacustrine deposits on the watersheds. The DIC and labile alkaline-earth metals, oxyanions (Mo, Sb and W) and U were impacted by southward-dominating forest coverage, loesses and eluvial and fertile soils. Assuming that climate warming in the WSL will lead to a northward shift of the forest and permafrost boundaries, a “substituting space for time” approach predicts a future increase in the concentration of DIC and labile major and trace elements and a decrease of the transport of DOC and low soluble trace metals in the form of colloids in the main stem of the Ob River. Overall, seasonally-resolved transect studies of large riverine systems of western Siberia are needed to assess the hydrochemical response of this environmentally-important territory to on-going climate change. Full article
Show Figures

Figure 1

Article
Major-Ion Chemistry and Quality of Water in Rivers of Northern West Siberia
Water 2021, 13(21), 3107; https://doi.org/10.3390/w13213107 - 04 Nov 2021
Cited by 6 | Viewed by 943
Abstract
This study reports a synthesis of years-long hydrogeochemical monitoring in northern West Siberia, performed by the Russian Meteorological Service (Rosgidromet) and several academic institutions. Natural factors and intensive human economic activity lead to the disruption of the ecosystems of the northern territories of [...] Read more.
This study reports a synthesis of years-long hydrogeochemical monitoring in northern West Siberia, performed by the Russian Meteorological Service (Rosgidromet) and several academic institutions. Natural factors and intensive human economic activity lead to the disruption of the ecosystems of the northern territories of Western Siberia. The aim of this study is to estimate the background water chemistry parameters in the rivers of northern West Siberia in the beginning of the 21st century. The mean values hydrochemical and geochemical indicators were determined with STATISTICA software, which can be used as background values in assessing the actual and allowable anthropogenic impact on water bodies. We revealed four water chemistry provinces: western Ob Gulf and Ob estuary catchments (I); eastern Ob Gulf and Taz Gulf catchments, except for the Taz River and its tributaries (II); Taz River catchments (III); Yenisei River catchments, right bank (IV). The major-ion chemistry of the sampled river waters records a combination of geological, geomorphological, and hydrological conditions in the four provinces. The features typical of the northern West Siberian Plain are especially prominent in province II, which has the lowest average total of major ions (Σmi), the highest chemical oxygen demand (potassium dichromate COD), and the highest contents of Fe and phosphates. The Σmi value is the highest in province IV. The river waters from four provinces share similarity in quite high organic contents (both potassium dichromate and permanganate COD), as well as high NH4+ and Fe. The long-term average Σmi of the waters is predicted not to change much in the coming one or two decades, though it may decrease slightly in the winter season but increase in the fall and spring time. Full article
Show Figures

Figure 1

Article
Testing Landscape, Climate and Lithology Impact on Carbon, Major and Trace Elements of the Lena River and Its Tributaries during a Spring Flood Period
Water 2021, 13(15), 2093; https://doi.org/10.3390/w13152093 - 30 Jul 2021
Cited by 4 | Viewed by 1455
Abstract
Transport of carbon, major and trace elements by rivers in permafrost-affected regions is one of the key factors in circumpolar aquatic ecosystem response to climate warming and permafrost thaw. A snap-shot study of major and trace element concentration in the Lena River basin [...] Read more.
Transport of carbon, major and trace elements by rivers in permafrost-affected regions is one of the key factors in circumpolar aquatic ecosystem response to climate warming and permafrost thaw. A snap-shot study of major and trace element concentration in the Lena River basin during the peak of spring flood revealed a specific group of solutes according to their spatial pattern across the river main stem and tributaries and allowed the establishment of a link to certain landscape parameters. We demonstrate a systematic decrease of labile major and trace anion, alkali and alkaline-earth metal concentration downstream of the main stem of the Lena River, linked to change in dominant rocks from carbonate to silicate, and a northward decreasing influence of the groundwater. In contrast, dissolved organic carbon (DOC) and a number of low-soluble elements exhibited an increase in concentration from the SW to the NE part of the river. We tentatively link this to an increase in soil organic carbon stock and silicate rocks in the Lena River watershed in this direction. Among all the landscape parameters, the proportion of sporadic permafrost on the watershed strongly influenced concentrations of soluble highly mobile elements (Cl, B, DIC, Li, Na, K, Mg, Ca, Sr, Mo, As and U). Another important factor of element concentration control in the Lena River tributaries was the coverage of the watershed by light (for B, Cl, Na, K, U) and deciduous (for Fe, Ni, Zn, Ge, Rb, Zr, La, Th) needle-leaf forest (pine and larch). Our results also suggest a DOC-enhanced transport of low-soluble trace elements in the NW part of the basin. This part of the basin is dominated by silicate rocks and continuous permafrost, as compared to the carbonate rock-dominated and groundwater-affected SW part of the Lena River basin. Overall, the impact of rock lithology and permafrost on major and trace solutes of the Lena River basin during the peak of spring flood was mostly detected at the scale of the main stem. Such an impact for tributaries was much less pronounced, because of the dominance of surface flow and lower hydrological connectivity with deep groundwater in the latter. Future changes in the river water chemistry linked to climate warming and permafrost thaw at the scale of the whole river basin are likely to stem from changes in the spatial pattern of dominant vegetation as well as the permafrost regime. We argue that comparable studies of large, permafrost-affected rivers during contrasting seasons, including winter baseflow, should allow efficient prediction of future changes in riverine ‘inorganic’ hydrochemistry induced by permafrost thaw. Full article
Show Figures

Figure 1

Article
Seasonal Variations of Dissolved Iron Concentration in Active Layer and Rivers in Permafrost Areas, Russian Far East
Water 2020, 12(9), 2579; https://doi.org/10.3390/w12092579 - 15 Sep 2020
Cited by 3 | Viewed by 1558
Abstract
Dissolved iron (dFe) in boreal rivers may play an important role in primary production in high-latitude oceans. However, iron behavior in soils and dFe discharge mechanism from soil to the rivers are poorly understood. To better understand iron dynamics on the watershed scale, [...] Read more.
Dissolved iron (dFe) in boreal rivers may play an important role in primary production in high-latitude oceans. However, iron behavior in soils and dFe discharge mechanism from soil to the rivers are poorly understood. To better understand iron dynamics on the watershed scale, we observed the seasonal changes in dFe and Dissolved Organic Carbon (DOC) concentrations in the river as well as dFe concentration in soil pore waters in permafrost watershed from May to October. During snowmelt season, high dFe production (1.38–4.70 mg L1) was observed in surface soil pore waters. Correspondingly, riverine dFe and DOC concentrations increased to 1.10 mg L1 and 32.3 mg L1, and both were the highest in the year. After spring floods, riverine dFe and DOC concentrations decreased to 0.15 mg L1 and 7.62 mg L1, and dFe concentration in surface soil pore waters also decreased to 0.20–1.28 mg L1. In late July, riverine dFe and DOC concentrations increased to 0.33 mg L1 and 23.6 mg L1 in response to heavy rainfall. In August and September, considerable increases in dFe concentrations (2.00–6.90 mg L1) were observed in subsurface soil pore waters, probably because infiltrated rainwater developed reducing conditions. This dFe production was confirmed widely in permafrost wetlands in valley areas. Overall, permafrost wetlands in valley areas are hotspots of dFe production and greatly contribute to dFe and DOC discharge to rivers, especially during snowmelt and rainy seasons. Full article
Show Figures

Figure 1

Article
Spatial and Seasonal Variations of C, Nutrient, and Metal Concentration in Thermokarst Lakes of Western Siberia Across a Permafrost Gradient
Water 2020, 12(6), 1830; https://doi.org/10.3390/w12061830 - 26 Jun 2020
Cited by 15 | Viewed by 1908
Abstract
Thermokarst lakes and ponds formed due to thawing of frozen peat in high-latitude lowlands are very dynamic and environmentally important aquatic systems that play a key role in controlling C emission to atmosphere and organic carbon (OC), nutrient, and metal lateral export to [...] Read more.
Thermokarst lakes and ponds formed due to thawing of frozen peat in high-latitude lowlands are very dynamic and environmentally important aquatic systems that play a key role in controlling C emission to atmosphere and organic carbon (OC), nutrient, and metal lateral export to rivers and streams. However, despite the importance of thermokarst lakes in assessing biogeochemical functioning of permafrost peatlands in response to climate warming and permafrost thaw, spatial (lake size, permafrost zone) and temporal (seasonal) variations in thermokarst lake hydrochemistry remain very poorly studied. Here, we used unprecedented spatial coverage (isolated, sporadic, discontinuous, and continuous permafrost zone of the western Siberia Lowland) of 67 lakes ranging in size from 102 to 105 m2 for sampling during three main hydrological periods of the year: spring flood, summer baseflow, and autumn time before ice-on. We demonstrate a systematic, all-season decrease in the concentration of dissolved OC (DOC) and an increase in SO4, N-NO3, and some metal (Mn, Co, Cu, Mo, Sr, U, Sb) concentration with an increase in lake surface area, depending on the type of the permafrost zone. These features are interpreted as a combination of (i) OC and organically bound metal leaching from peat at the lake shore, via abrasion and delivery of these compounds by suprapermafrost flow, and (ii) deep groundwater feeding of large lakes (especially visible in the continuous permafrost zone). Analyses of lake water chemical composition across the permafrost gradient allowed a first-order empirical prediction of lake hydrochemical changes in the case of climate warming and permafrost thaw, employing a substituting space for time scenario. The permafrost boundary shift northward may decrease the concentrations and pools of dissolved inorganic carbon (DIC), Li, B, Mg, K, Ca, Sr, Ba, Ni, Cu, As, Rb, Mo, Sr, Y, Zr, rare Earth elements (REEs), Th, and U by a factor of 2–5 in the continuous permafrost zone, but increase the concentrations of CH4, DOC, NH4, Cd, Sb, and Pb by a factor of 2–3. In contrast, the shift of the sporadic to isolated zone may produce a 2–5-fold decrease in CH4, DOC, NH4, Al, P, Ti, Cr, Ni, Ga, Zr, Nb, Cs, REEs, Hf, Th, and U. The exact magnitude of this response will, however, be strongly seasonally dependent, with the largest effects observable during baseflow seasons. Full article
Show Figures

Figure 1

Article
Impact of Permafrost Thaw and Climate Warming on Riverine Export Fluxes of Carbon, Nutrients and Metals in Western Siberia
Water 2020, 12(6), 1817; https://doi.org/10.3390/w12061817 - 24 Jun 2020
Cited by 27 | Viewed by 2771
Abstract
The assessment of riverine fluxes of carbon, nutrients, and metals in surface waters of permafrost-affected regions is crucially important for constraining adequate models of ecosystem functioning under various climate change scenarios. In this regard, the largest permafrost peatland territory on the Earth, the [...] Read more.
The assessment of riverine fluxes of carbon, nutrients, and metals in surface waters of permafrost-affected regions is crucially important for constraining adequate models of ecosystem functioning under various climate change scenarios. In this regard, the largest permafrost peatland territory on the Earth, the Western Siberian Lowland (WSL) presents a unique opportunity of studying possible future changes in biogeochemical cycles because it lies within a south–north gradient of climate, vegetation, and permafrost that ranges from the permafrost-free boreal to the Arctic tundra with continuous permafrost at otherwise similar relief and bedrocks. By applying a “substituting space for time” scenario, the WSL south-north gradient may serve as a model for future changes due to permafrost boundary shift and climate warming. Here we measured export fluxes (yields) of dissolved organic carbon (DOC), major cations, macro- and micro- nutrients, and trace elements in 32 rivers, draining the WSL across a latitudinal transect from the permafrost-free to the continuous permafrost zone. We aimed at quantifying the impact of climate warming (water temperature rise and permafrost boundary shift) on DOC, nutrient and metal in rivers using a “substituting space for time” approach. We demonstrate that, contrary to common expectations, the climate warming and permafrost thaw in the WSL will likely decrease the riverine export of organic C and many elements. Based on the latitudinal pattern of riverine export, in the case of a northward shift in the permafrost zones, the DOC, P, N, Si, Fe, divalent heavy metals, trivalent and tetravalent hydrolysates are likely to decrease the yields by a factor of 2–5. The DIC, Ca, SO4, Sr, Ba, Mo, and U are likely to increase their yields by a factor of 2–3. Moreover, B, Li, K, Rb, Cs, N-NO3, Mg, Zn, As, Sb, Rb, and Cs may be weakly affected by the permafrost boundary migration (change of yield by a factor of 1.5 to 2.0). We conclude that modeling of C and element cycle in the Arctic and subarctic should be region-specific and that neglecting huge areas of permafrost peatlands might produce sizeable bias in our predictions of climate change impact. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

Review
The Main Features of Phosphorus Transport in World Rivers
Water 2022, 14(1), 16; https://doi.org/10.3390/w14010016 - 22 Dec 2021
Cited by 1 | Viewed by 1761
Abstract
Data on the geochemistry of phosphorus in the continental runoff of dissolved and solid substances were systematized and generalized, with a separate consideration of the processes of runoff transformation in river mouth areas. It has been established that atmospheric deposition, which many authors [...] Read more.
Data on the geochemistry of phosphorus in the continental runoff of dissolved and solid substances were systematized and generalized, with a separate consideration of the processes of runoff transformation in river mouth areas. It has been established that atmospheric deposition, which many authors consider to be an important source of phosphorus in river runoff and not associated with mobilization processes in catchments, actually contains phosphorus from soil-plant recycling. This is confirmed by the fact that the input of phosphorus from the atmosphere into catchments exceeds its removal via water runoff. An analysis of the mass ratio of phosphorus in the adsorbed form and in the form of its own minerals was carried out. It was shown that the maximum mass of adsorbed phosphorus is limited by the solubility of its most stable minerals. The minimum concentrations of dissolved mineral and total phosphorus were observed in the rivers of the Arctic and subarctic belts; the maximum concentrations were confined to the most densely populated temperate zone and the zone of dry tropics and subtropics. In the waters of the primary hydrographic network, the phosphorus concentration exhibited direct relationships with the population density in the catchments and the mineralization of the river water and was closely correlated with the nitrogen content. This strongly suggests that economic activity is one of the main factors in the formation of river phosphorus runoff. The generalization of the authors’ and the literature’s data on the behavior of phosphorus at the river–sea mixing zone made it possible to draw a conclusion about the nonconservative distribution of phosphorus, in most cases associated with biological production and destruction processes. The conservative behavior of phosphorus was observed only in heavily polluted river mouths with abnormally high concentrations of this element. Full article
Show Figures

Figure 1

Back to TopTop