Hydrological Modeling and Assessment of Meteorological and Geological Hazards

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrology".

Deadline for manuscript submissions: 30 October 2024 | Viewed by 655

Special Issue Editors


E-Mail Website
Guest Editor
1. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, Xi’an, China
2. School of Water and Environment, Chang’an University, Xi’an, China
Interests: soil environmental quality; soil erosion; hydrology ecology; geological disaster
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang’an University, 710064 Xi’an, China
2. School of Water and Environment, Chang’an University, 710064 Xi’an, China
Interests: urban flood; flood management; hydrological modeling; water quality analysis; statistical analysis; sustainable water resource management; ecohydrology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, rapid population growth has led to enormous amounts of pressure being put on resources and the environment. Continuous human activities and climate change have caused the deterioration of ecological environments, resulting in a series of meteorological, geological, and other natural disasters. Disaster prevention and reduction is a common goal pursued by all countries in the world. In natural disaster risk monitoring and assessment, hydrological ecological models and risk assessment indicators can give full consideration to the advantages of numerical simulation, correlation analysis, and generalized reasoning methods and have been widely used in the past 20 years. Understanding the impact of human activities and climate change in key regions is conducive to regional natural disaster risk management, the establishment of a natural disaster risk assessment system, and the provision of scientific support for disaster prevention and reduction. However, controlling disaster risk completely seems impractical, especially since quantifying human activities is often difficult. In these cases, reliable methods such as hydrological models and numerical simulations seem to be the most promising way to reduce natural disasters and increase social resilience.

Given this scientific framework, we would like to invite scientists involved in this research field to contribute to this Special Issue, which will broadly focus on the analysis, evaluation, and simulation of natural disasters caused by climate change, human activities, or other drivers, including the risk management and assessment of meteorological disasters and geological disasters. Therefore, manuscripts dealing with case studies of climate change simulation, the impacts of human activities, large-scale or regional drought disasters, the assessment of geological environment trends, and risk analysis of natural disasters at different scales will also be welcomed.

Prof. Dr. Aidi Huo
Prof. Dr. Pingping Luo
Dr. Chunli Zheng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • climate change
  • meteorological and geological disaster
  • risk assessment
  • hydrological simulation

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4680 KiB  
Article
Spatial Differentiation and Influencing Factors Analysis of Drought Characteristics Based on the Standardized Precipitation Index: A Case Study of the Yellow River Basin
by Qi Liu, Aidi Huo, Zhixin Zhao, Xuantao Zhao, Nazih Yacer Rebouh and Chenxu Luo
Water 2024, 16(10), 1337; https://doi.org/10.3390/w16101337 - 8 May 2024
Viewed by 530
Abstract
It is crucial to identify drought characteristics and determine drought severity in response to climate change. Aiming at the increasingly serious drought situation in the Yellow River Basin, this study firstly selected the standardized precipitation index (SPI) and streamflow drought index (SDI) to [...] Read more.
It is crucial to identify drought characteristics and determine drought severity in response to climate change. Aiming at the increasingly serious drought situation in the Yellow River Basin, this study firstly selected the standardized precipitation index (SPI) and streamflow drought index (SDI) to analyze the characteristics of drought seasons, then identified the frequency, duration, and intensity of drought based on the run theory, and finally recognized the abrupt changing and driving factors of major drought events in specific years by the Mann–Kendall trend test. The conclusions showed the following: (1) The drought in the downstream of the Yellow River Basin was more severe than that in the upstream. The drought characteristics showed significant regional differentiation and deterioration. (2) The drought intensity and duration had an obvious spatial correlation. Compared with the other seasons, the drought duration and severity in spring and autumn were the most serious, and in winter, they showed an aggravating trend. (3) According to a time series analysis of drought conditions in the Yellow River Basin, the worst drought occurred in 1997–2001 with the least rainfall on record and a sudden rise in temperatures. This study could provide a scientific reference for agricultural drought disaster prevention and mitigation. Full article
Show Figures

Figure 1

Back to TopTop