New Horizons in Myopia Management: Bridging Epidemiology and Clinical Innovation

A special issue of Vision (ISSN 2411-5150).

Deadline for manuscript submissions: closed (20 September 2024) | Viewed by 7385

Special Issue Editors


E-Mail Website
Guest Editor
Shamir Medical Center, Tel Aviv University, Tel Aviv 60930, Israel
Interests: myopia; strabismus; ocular surface

E-Mail Website
Guest Editor
Department of Ophthalmology, Faculty of Medicine, Hadassah-Hebrew University Medical Center, Hebrew University of Jerusalem, Jerusalem 91120, Israel
Interests: cornea; corneal topography; myopia; keratoconus; contact lenses
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As Guest Editors of the forthcoming Special Issue on myopia, we warmly invite scholars, clinicians, and researchers to contribute original manuscripts that will enrich our collective understanding of this increasingly prevalent ocular condition. Myopia can lead to physiological changes in the eye that increase the risk of sight-threatening complications, while even non-pathological changes can detrimentally impact visual quality and an individual's overall quality of life.

Myopia can lead to irreversible visual impairment. Early detection and intervention of eye and visual disorders are particularly crucial in childhood, given the younger population's more rapid development.

The primary aim of this Special Issue is to assemble a comprehensive collection of peer-reviewed articles that explore a wide array of topics related to myopia and other visual disorders. We invite original articles or reviews focused on, but not limited to, the following potential topics: prevalence studies of myopia or other visual disorders, risk and prevention factors, treatment and control methods, approaches for detecting and measuring the risk of developing myopia or other visual disorders, the influence of myopia on visual function and overall quality of life, and ocular pathologies in childhood. We are also keen to include articles that delve into advances in diagnostic technologies and imaging techniques, the role of artificial intelligence in myopia research, and innovations in treatment modalities, including pharmacological interventions and surgical procedures.

Given the rapidly evolving landscape of myopia research, marked by significant technological advancements and a growing wealth of studies within the literature, this Special Issue aims to serve as a valuable resource for clinicians striving to keep pace with the field.
We are honored to invite contributors to submit studies.

Prof. Dr. Yair Morad
Dr. Nir Erdinest
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vision is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • myopia
  • axial length
  • myopia control
  • myopia management
  • epidemiology
  • diagnostic technologies
  • artificial intelligence
  • treatment modalities
  • risk factors
  • pathologic myopia

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

4 pages, 458 KiB  
Editorial
New Horizons in Myopia Management: Bridging Epidemiology and Clinical Innovation
by Nir Erdinest and Yair Morad
Vision 2024, 8(4), 68; https://doi.org/10.3390/vision8040068 - 1 Dec 2024
Viewed by 399
Abstract
In 1975, Brit J [...] Full article
Show Figures

Figure 1

Research

Jump to: Editorial

8 pages, 418 KiB  
Article
Comparison of Eye Axial Length Measurements Taken Using Partial Coherence Interferometry and OCT Biometry
by Nicola Rizzieri and Alessio Facchin
Vision 2024, 8(3), 46; https://doi.org/10.3390/vision8030046 - 26 Jul 2024
Viewed by 1480
Abstract
This study evaluates the inter-device measurement properties of partial coherence interferometry (PCI) and spectral domain optical coherence tomography (SD-OCT) in measuring axial length, particularly for myopia management. We recruited 82 eyes from 41 adult participants with a mean age of 31.0 ± 17.6 [...] Read more.
This study evaluates the inter-device measurement properties of partial coherence interferometry (PCI) and spectral domain optical coherence tomography (SD-OCT) in measuring axial length, particularly for myopia management. We recruited 82 eyes from 41 adult participants with a mean age of 31.0 ± 17.6 years and a mean spherical equivalent of −2.20 ± 2.28 D. Axial length was measured using SD-OCT and PCI for both the right and left eyes. Agreement between the two measurements was assessed using Bland–Altman analysis, and graphs and values were compared with linear mixed models. The results show a near-to-zero and non-significant bias between measurements. The 95% limits of agreement showed a value of 0.06 mm. Both devices can accurately measure the axial length. OCT biometry performed with SD-OCT can be successfully interchanged with partial coherence interferometry, but they should be cautiously interchanged when performing longitudinal comparisons. Full article
Show Figures

Figure 1

19 pages, 1705 KiB  
Article
An Insight into Knowledge, Perspective, and Practices of Indian Optometrists towards Childhood Myopia
by Archana Naik, Siddharth K. Karthikeyan, Jivitha Jyothi Ramesh, Shwetha Bhaskar, Chinnappa A. Ganapathi and Sayantan Biswas
Vision 2024, 8(2), 22; https://doi.org/10.3390/vision8020022 - 16 Apr 2024
Cited by 2 | Viewed by 2768
Abstract
The current understanding of clinical approaches and barriers in managing childhood myopia among Indian optometrists is limited. This research underscores the necessity and relevance of evidence-based practice guidelines by exploring their knowledge, attitude, and practice towards childhood myopia. A self-administered internet-based 26-item survey [...] Read more.
The current understanding of clinical approaches and barriers in managing childhood myopia among Indian optometrists is limited. This research underscores the necessity and relevance of evidence-based practice guidelines by exploring their knowledge, attitude, and practice towards childhood myopia. A self-administered internet-based 26-item survey was circulated online among practicing optometrists in India. The questions assessed the demographics, knowledge, self-reported clinical practice behavior, barriers, source of information guiding their management, and extent of adult caregiver engagement for childhood myopia. Of 393 responses, a significant proportion of respondents (32.6–92.4%) were unaware of the ocular complications associated with high myopia, with less than half (46.5%) routinely performing ocular biometry in clinical practice. Despite the growing awareness of emerging myopia management options, the uptake remains generally poor, with single-vision distance full-correction spectacles (70.3%) being the most common mode of vision correction. Barriers to adopting optimal myopia care are medicolegal concerns, absence of clinical practice guidelines, and inadequate consultation time. Own clinical experience and original research articles were the primary sources of information supporting clinical practice. Most (>70%) respondents considered involving the adult caregiver in their child’s clinical decision-making process. While practitioners’ awareness and activity of newer myopia management strategies are improving, there is plenty of scope for its enhancement. The importance of evidence-based practice guidelines and continuing education on myopia control might help practitioners enhance their clinical decision-making skills. Full article
Show Figures

Figure 1

17 pages, 2188 KiB  
Article
Enhancement of the Inner Foveal Response of Young Adults with Extended-Depth-of-Focus Contact Lens for Myopia Management
by Ana Amorim-de-Sousa, Rute J. Macedo-de-Araújo, Paulo Fernandes, José M. González-Méijome and António Queirós
Vision 2024, 8(2), 19; https://doi.org/10.3390/vision8020019 - 14 Apr 2024
Viewed by 1793
Abstract
Background: Myopia management contact lenses have been shown to successfully decrease the rate of eye elongation in children by changing the peripheral refractive profile of the retina. Despite the efforts of the scientific community, the retinal response mechanism to defocus is still unknown. [...] Read more.
Background: Myopia management contact lenses have been shown to successfully decrease the rate of eye elongation in children by changing the peripheral refractive profile of the retina. Despite the efforts of the scientific community, the retinal response mechanism to defocus is still unknown. The purpose of this study was to evaluate the local electrophysiological response of the retina with a myopia control contact lens (CL) compared to a single-vision CL of the same material. Methods: The retinal electrical activity and peripheral refraction of 16 eyes (16 subjects, 27.5 ± 5.7 years, 13 females and 3 males) with myopia between −0.75 D and −6.00 D (astigmatism < 1.00 D) were assessed with two CLs (Filcon 5B): a single-vision (SV) CL and an extended-depth-of-focus (EDOF) CL used for myopia management. The peripheral refraction was assessed with an open-field WAM-5500 auto-refractometer/keratometer in four meridians separated by 45° at 2.50 m distance. The global-flash multifocal electroretinogram (gf-mfERG) was recorded with the Reti-port/scan21 (Roland Consult) using a stimulus of 61 hexagons. The implicit time (in milliseconds) and response density (RD, in nV/deg2) of the direct (DC) and induced (IC) components were used for comparison between lenses in physiological pupil conditions. Results: Although the EDOF decreased both the HCVA and the LCVA (one and two lines, respectively; p < 0.003), it still allowed a good VA. The EDOF lens induced a myopic shift in most retinal areas, with a higher and statistically significant effect on the nasal retina. No differences in the implicit times of the DC and IC components were observed between SV and EDOF. Compared with the SV, the EDOF lens showed a higher RD in the IC component in the foveal region (p = 0.032). In the remaining retinal areas, the EDOF evoked lower, non-statistically significant RD in both the DC and IC components. Conclusions: The EDOF myopia control CL enhanced the response of the inner layers of the fovea. This might suggest that, besides other mechanisms potentially involved, the central foveal retinal activity might be involved in the mechanism of myopia control with these lenses. Full article
Show Figures

Figure 1

Back to TopTop