Special Issue "The Application of Viruses to Biotechnology"

A special issue of Viruses (ISSN 1999-4915).

Deadline for manuscript submissions: 30 September 2020.

Special Issue Editors

Dr. Carla Varanda
Website
Guest Editor
ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
Interests: plant virology; plant protection; plant pathology; virus-induced gene silencing; diagnostic methods; gene expression
Dr. Patrick Materatski
Website
Guest Editor
ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Polo da Mitra, Ap. 94, 7006-554 Évora, Portugal
Interests: plant virology; virus-induced gene silencing (VIGS); RNAi; fungal ecology; plant pathogenic fungi; plant protection; molecular biology; plant parasitic nematodes; benthic nematodes

Special Issue Information

Dear Colleagues,

Viruses are capable of causing devastating diseases in several organisms; however, they are simple systems and can be manipulated to be beneficial and useful for several purposes in different areas. In medicine, they have been used for a long time in vaccines and are now being used as vectors to carry materials for the treatment of diseases, such as cancer, in specific target cells. In agriculture, they are being studied to introduce desirable characteristics in plants or render resistance to biotic and abiotic stresses. They have been exploited in nanotechnology for the deposition of specific metals and have been shown to be of great benefit to nanomaterial production. They can also be used for different applications in pharmacology, cosmetics, electronics, and other industries. Additionally, they have been used in gene therapy to deliver specific genes into organisms. Thus, viruses are no longer only seen as bad pathogens. They have shown enormous potential, covering several important areas in our lives, and they are making our lives easier and better. While they have already proved their potential in some industries and areas of research, there is still a long road ahead. In this Special Issue, our aim is to contribute to the current knowledge on virus use and to highlight recent significant advances in the use of viruses in several fields.

Dr. Carla Varanda
Dr. Patrick Materatski
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Viruses is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • viral vectors
  • potential use
  • plant protection
  • nanotechnology
  • gene therapy

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Virus-Induced Flowering by Apple Latent Spherical Virus Vector: Effective Use to Accelerate Breeding of Grapevine
Viruses 2020, 12(1), 70; https://doi.org/10.3390/v12010070 - 07 Jan 2020
Abstract
Apple latent spherical virus (ALSV) was successfully used in promoting flowering (virus-induced flowering, VIF) in apple and pear seedlings. In this paper, we report the use of ALSV vectors for VIF in seedlings and in vitro cultures of grapevine. After adjusting experimental conditions [...] Read more.
Apple latent spherical virus (ALSV) was successfully used in promoting flowering (virus-induced flowering, VIF) in apple and pear seedlings. In this paper, we report the use of ALSV vectors for VIF in seedlings and in vitro cultures of grapevine. After adjusting experimental conditions for biolistic inoculation of virus RNA, ALSV efficiently infected not only progeny seedlings of Vitis spp. ‘Koshu,’ but also in vitro cultures of V. vinifera ‘Neo Muscat’ without inducing viral symptoms. The grapevine seedlings and in vitro cultures inoculated with an ALSV vector expressing the ‘florigen’ gene (Arabidopsis Flowering locus T, AtFT) started to set floral buds 20–30 days after inoculation. This VIF technology was successfully used to promote flowering and produce grapes with viable seeds in in vitro cultures of F1 hybrids from crosses between V. ficifolia and V. vinifera and made it possible to analyze the quality of fruits within a year after germination. High-temperature (37 °C) treatment of ALSV-infected grapevine disabled virus movement to newly growing tissue to obtain ALSV-free shoots. Thus, the VIF using ALSV vectors can be used to shorten the generation time of grapevine seedlings and accelerate breeding of grapevines with desired traits. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology)
Show Figures

Figure 1

Open AccessArticle
Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica
Viruses 2019, 11(9), 854; https://doi.org/10.3390/v11090854 - 14 Sep 2019
Cited by 2
Abstract
Phages infecting members of the opportunistic human pathogen, Salmonella enterica, are widespread in natural environments and offer a potential source of agents that could be used for controlling populations of this bacterium; yet, relatively little is known about these phages. Here we [...] Read more.
Phages infecting members of the opportunistic human pathogen, Salmonella enterica, are widespread in natural environments and offer a potential source of agents that could be used for controlling populations of this bacterium; yet, relatively little is known about these phages. Here we describe the isolation and characterization of 45 phages of Salmonella enterica from disparate geographic locations within British Columbia, Canada. Host-range profiling revealed host-specific patterns of susceptibility and resistance, with several phages identified that have a broad-host range (i.e., able to lyse >40% of bacterial hosts tested). One phage in particular, SE13, is able to lyse 51 out of the 61 Salmonella strains tested. Comparative genomic analyses also revealed an abundance of sequence diversity in the sequenced phages. Alignment of the genomes grouped the phages into 12 clusters with three singletons. Phages within certain clusters exhibited extraordinarily high genome homology (>98% nucleotide identity), yet between clusters, genomes exhibited a span of diversity (<50% nucleotide identity). Alignment of the major capsid protein also supported the clustering pattern observed with alignment of the whole genomes. We further observed associations between genomic relatedness and the site of isolation, as well as genetic elements related to DNA metabolism and host virulence. Our data support the knowledge framework for phage diversity and phage–host interactions that are required for developing phage-based applications for various sectors, including biocontrol, detection and typing. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology
Viruses 2020, 12(4), 451; https://doi.org/10.3390/v12040451 - 16 Apr 2020
Abstract
Many traditional vaccines have proven to be incapable of controlling newly emerging infectious diseases. They have also achieved limited success in the fight against a variety of human cancers. Thus, innovative vaccine strategies are highly needed to overcome the global burden of these [...] Read more.
Many traditional vaccines have proven to be incapable of controlling newly emerging infectious diseases. They have also achieved limited success in the fight against a variety of human cancers. Thus, innovative vaccine strategies are highly needed to overcome the global burden of these diseases. Advances in molecular biology and reverse genetics have completely restructured the concept of vaccinology, leading to the emergence of state-of-the-art technologies for vaccine design, development and delivery. Among these modern vaccine technologies are the recombinant viral vectored vaccines, which are known for their incredible specificity in antigen delivery as well as the induction of robust immune responses in the vaccinated hosts. Although a number of viruses have been used as vaccine vectors, genetically engineered Newcastle disease virus (NDV) possesses some useful attributes that make it a preferable candidate for vectoring vaccine antigens. Here, we review the molecular biology of NDV and discuss the reverse genetics approaches used to engineer the virus into an efficient vaccine vector. We then discuss the prospects of the engineered virus as an efficient vehicle of vaccines against cancer and several infectious diseases of man and animals. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology)
Show Figures

Figure 1

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Title: A systematic review of molecular and serological assays used for arbovirus detection in human samples
Author: Leah Katzelnick; et al.

Title: Engineered AAV8 capsid with improved heparin and AVB sepharose binding capacity has altered in vivo transduction efficiency
Author: Sarah Wootton; et al.

Title: Jaagsiekte Sheep Retrovirus Intragenic Enhancer Element Enhances Expression from a Heterologous Promoter and Promotes High Level AAV-mediated Transgene Expression in the Lung and Liver of Mice
Author: Sarah Wootton; et al.

Back to TopTop