Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology
Abstract
:1. Introduction
2. Newcastle Disease Virus
2.1. Architecture and Genome Organisation
2.2. Virulence Determinants
2.3. Transcription and Replication
3. Reverse Genetics System
3.1. Recovery of Recombinant NDV
3.2. Recent Improvement in NDV Rescue System
3.3. Strategies of Foreign Gene Expression Using NDV Vector
4. Engineered NDV as a Vaccine Vector against Infectious Diseases
4.1. Unique Attributes of NDV as a Vaccine Vector
4.2. Engineered NDV as a Bivalent Vaccine in Poultry
4.3. Engineered NDV as a Vaccine Vector in Ruminant and Monogastric Animals
4.4. Engineered NDV as a Vaccine Vector in Man
5. Engineered NDV as an Improved Cancer Vaccine
5.1. Molecular Mechanisms of NDV Induced Oncolysis
5.2. Recombinant NDV as an Improved Oncolytic Agent
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Greenwood, B. The contribution of vaccination to global health: Past, present and future. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, W.P.; Bhat, P.N.; Nanda, Y.P. The principles and practice of rinderpest eradication. Vet. Microbiol. 1995, 44, 359–367. [Google Scholar] [CrossRef]
- Henderson, D.A. The eradication of smallpox-An overview of the past, present, and future. Vaccine 2011, 29, D7–D9. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.S.; Wang, N.; Hofmann, M.; Barrie Kitto, G. Potential live vaccines for HIV. Vaccine 2000, 19, 735–742. [Google Scholar] [CrossRef]
- Chen, G.L.; Subbarao, K. Live attenuated vaccines for pandemic influenza. Curr. Top. Microbiol. Immunol. 2009, 333, 109–132. [Google Scholar]
- Gendon Iu, Z. Advantages and disadvantages of inactivated and live influenza vaccine. Vopr. Virusol. 2004, 49, 4–12. [Google Scholar]
- He, Y.; Rappuoli, R.; De Groot, A.S.; Chen, R.T. Emerging vaccine informatics. J. Biomed. Biotechnol. 2010, 2010. [Google Scholar] [CrossRef] [Green Version]
- Bello, M.B.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Peeters, B.P.H.; Omar, A.R. Diagnostic and Vaccination Approaches for Newcastle Disease Virus in Poultry: The Current and Emerging Perspectives. Biomed. Res. Int. 2018. [Google Scholar] [CrossRef]
- Alexander, D.J. Newcastle disease. Br. Poult. Sci. 2001, 42, 5–22. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated unified phylogenetic classification system and revised nomenclature for Newcastle disease virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef]
- Peeters, B.P.; de Leeuw, O.S.; Koch, G.; Gielkens, A.L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. J. Virol. 1999, 73, 5001–5009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, Y.; Hamaguchi, M.; Toyoda, T. Molecular Biology of Newcastle Disease Virus. Prog. Vet. Microbiol. Immunol. 1989, 5, 16–64. [Google Scholar] [PubMed]
- Yusoff, K.; Tan, W.S. Newcastle disease virus: Macromolecules and opportunities. Avian Pathol. 2001, 30, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Czeglédi, A.; Ujvári, D.; Somogyi, E.; Wehmann, E.; Werner, O.; Lomniczi, B. Third genome size category of avian paramyxovirus serotype 1 (Newcastle disease virus) and evolutionary implications. Virus Res. 2006, 120, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Murulitharan, K.; Yusoff, K.; Omar, A.R.; Molouki, A. Characterization of Malaysian velogenic NDV strain AF2240-I genomic sequence: A comparative study. Virus Genes 2013, 46, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Curran, J.; Kolakofsky, D. Replication of paramyxoviruses. Adv. Virus Res. 1999, 54, 403–422. [Google Scholar]
- Munir, M.; Zohari, S.; Abbas, M.; Berg, M. Sequencing and analysis of the complete genome of Newcastle disease virus isolated from a commercial poultry farm in 2010. Arch. Virol. 2012, 157, 765–768. [Google Scholar] [CrossRef]
- Dortmans, J.C.F.M.; Rottier, P.J.M.; Koch, G.; Peeters, B.P.H. The viral replication complex is associated with the virulence of Newcastle disease virus. J. Virol. 2010, 84, 10113–10120. [Google Scholar] [CrossRef] [Green Version]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef]
- Rout, S.N.; Samal, S.K. The Large Polymerase Protein Is Associated with the Virulence of Newcastle Disease Virus. J. Virol. 2008, 82, 7828–7836. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.S.; Strong, I.; Alexander, D.J. Evaluation of the molecular basis of pathogenicity of the variant Newcastle disease viruses termed? pigeon “MV-1 viruses”. Arch. Virol. 1994, 134, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Huang, Z.; Elankumaran, S.; Rockemann, D.D.; Samal, S.K. Role of fusion protein cleavage site in the virulence of Newcastle disease virus. Microb. Pathog. 2004, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.; Khattar, S.K.; Kumar, S.; Collins, P.L.; Samal, S.K. Coordinate deletion of N-glycans from the heptad repeats of the fusion F protein of Newcastle disease virus yields a hyperfusogenic virus with increased replication, virulence, and immunogenicity. J. Virol. 2012, 86, 2501–2511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiden, S.; Grund, C.; Röder, A.; Granzow, H.; Kühnel, D.; Mettenleiter, T.C.; Römer-Oberdörfer, A. Different regions of the newcastle disease virus fusion protein modulate pathogenicity. PLoS ONE 2014, 9, e113344. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Z.; Zsak, L.; Yu, Q. Effects of the HN gene C-terminal extensions on the Newcastle disease virus virulence. Virus Genes 2013, 47, 498–504. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, J.; Ren, Y.; Zhong, Q.; Zhang, G. Contribution of HN protein length diversity to Newcastle disease virus virulence, replication and biological activities. Sci. Rep. 2016, 6, 36890. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Krishnamurthy, S.; Panda, A.; Samal, S.K. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J. Virol. 2003, 77, 8676–8685. [Google Scholar] [CrossRef] [Green Version]
- Nagai, Y. Paramyxovirus replication and pathogenesis. Reverse genetics transforms understanding. Rev. Med. Virol. 1999, 9, 83–99. [Google Scholar] [CrossRef]
- Noton, S.L.; Fearns, R. Initiation and regulation of paramyxovirus transcription and replication. Virology 2015, 479–480, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Peeters, B.P.H.; Gruijthuijsen, Y.K.; De Leeuw, O.S.; Gielkens, A.L.J. Genome replication of Newcastle disease virus: Involvement of the rule-of-six. Arch. Virol. 2000, 145, 1829–1845. [Google Scholar] [CrossRef]
- Whelan, S.P.J.; Barr, J.N.; Wertz, G.W. Transcription and replication of nonsegmented negative-strand RNA viruses. Curr. Top. Microbiol. Immunol. 2004, 283, 61–119. [Google Scholar] [PubMed]
- Conzelmann, K.K. Reverse genetics of mononegavirales. Curr. Top. Microbiol. Immunol. 2004, 283, 1–41. [Google Scholar] [PubMed]
- Vulliémoz, D.; Roux, L. “Rule of six”: How does the Sendai virus RNA polymerase keep count? J. Virol. 2001, 75, 4506–4518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gururaj, K.; Kirubaharan, J.J.; Gupta, V.K.; Pawaiya, R.S. Review Article Past and Present of Reverse Genetics in Animal Virology with Special Reference to Non–Segmented Negative Stranded RNA Viruses: A Review. Adv. Anim. Vet. Sci. 2014, 2, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, T.; Palmieri, M.; Weissmann, C. Qβ DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature 1978, 274, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Conzelmann, K.K.; Schnell, M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J. Virol. 1994, 68, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Liu, H.; Liu, P.; Kong, X. Plasmids driven minigenome rescue system for Newcastle disease virus V4 strain. Mol. Biol. Rep. 2009, 36, 1909–1914. [Google Scholar] [CrossRef]
- Su, J.; Dou, Y.; You, Y.; Cai, X. Application of minigenome technology in virology research of the Paramyxoviridae family. J. Microbiol. Immunol. Infect. 2015, 48, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Albina, E.; Gil, P.; Minet, C.; de Almeida, R.S. Two-plasmid system to increase the rescue efficiency of paramyxoviruses by reverse genetics: The example of rescuing Newcastle Disease Virus. Virology 2017, 509, 42–51. [Google Scholar] [CrossRef]
- Peeters, B.; de Leeuw, O. A single-plasmid reverse genetics system for the rescue of non-segmented negative-strand RNA viruses from cloned full-length cDNA. J. Virol. Methods 2017, 248, 187–190. [Google Scholar] [CrossRef]
- Schirrmacher, V.; Fournier, P. Newcastle disease virus: A promising vector for viral therapy, immune therapy, and gene therapy of cancer. Methods Mol. Biol. 2009, 542, 565–605. [Google Scholar] [PubMed]
- Shirvani, E.; Paldurai, A.; Manoharan, V.K.; Varghese, B.P.; Samal, S.K. A Recombinant Newcastle Disease Virus (NDV) Expressing S Protein of Infectious Bronchitis Virus (IBV) Protects Chickens against IBV and NDV. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhang, Z.; Zsak, L.; Yu, Q. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression. J. Gen. Virol. 2015, 96, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Krishnamurthy, S.; Panda, A.; Samal, S.K. High-level expression of a foreign gene from the most 3’-proximal locus of a recombinant Newcastle disease virus. J. Gen. Virol. 2001, 82, 1729–1736. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, W.; Li, D.; Yang, J.; Zsak, L.; Yu, Q. Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. J. Gen. Virol. 2015, 96, 2028–2035. [Google Scholar] [CrossRef]
- Kieft, J.S. Viral IRES RNA structures and ribosome interactions. Trends Biochem. Sci. 2008, 33, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Susta, L.; Cornax, I.; Diel, D.G.; Garcia, S.C.; Miller, P.J.; Liu, X.; Hu, S.; Brown, C.C.; Afonso, C.L. Expression of interferon gamma by a highly virulent strain of Newcastle disease virus decreases its pathogenicity in chickens. Microb. Pathog. 2013, 61–62, 73–83. [Google Scholar] [CrossRef]
- Hu, H.; Roth, J.P.; Zsak, L.; Yu, Q. Engineered Newcastle disease virus expressing the F and G proteins of AMPV-C confers protection against challenges in turkeys. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- DiNapoli, J.M.; Kotelkin, A.; Yang, L.; Elankumaran, S.; Murphy, B.R.; Samal, S.K.; Collins, P.L.; Bukreyev, A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc. Natl. Acad. Sci. USA 2007, 104, 9788–9793. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Ge, J.; Wang, J.; Shao, Y.; Zhang, H.; Wang, J.; Wen, Z.; Bu, Z. Newcastle disease virus-based MERS-CoV candidate vaccine elicits high-level and lasting neutralizing antibodies in Bactrian camels. J. Integr. Agric. 2017, 16, 2264–2273. [Google Scholar] [CrossRef]
- Kortekaas, J.; Dekker, A.; de Boer, S.M.; Weerdmeester, K.; Vloet, R.P.M.; De Wit, A.A.C.; Peeters, B.P.H.; Moormann, R.J.M. Intramuscular inoculation of calves with an experimental Newcastle disease virus-based vector vaccine elicits neutralizing antibodies against Rift Valley fever virus. Vaccine 2010, 28, 2271–2276. [Google Scholar] [CrossRef]
- Khattar, S.K.; Collins, P.L.; Samal, S.K. Immunization of cattle with recombinant Newcastle disease virus expressing bovine herpesvirus-1 (BHV-1) glycoprotein D induces mucosal and serum antibody responses and provides partial protection against BHV-1. Vaccine 2010, 28, 3159–3170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ge, J.; Wen, Z.; Chen, W.; Wang, X.; Liu, R.; Bu, Z. Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Arch. Virol. 2017, 162, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Sun, J.; Qi, T.; Zhao, W.; Han, Z.; Yang, X.; Liu, S. Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge. Vaccine 2017, 35, 2435–2442. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Spatz, S.; Zhang, Z.; Wen, G.; Garcia, M.; Zsak, L.; Yu, Q. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) gB and gD glycoproteins protect chickens against ILTV and NDV challenge. J. Virol. 2014, 88, 8397–8406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schröer, D.; Veits, J.; Keil, G.; Römer-Oberdörfer, A.; Weber, S.; Mettenleiter, T.C. Efficacy of Newcastle disease virus recombinant expressing avian influenza virus H6 hemagglutinin against Newcastle disease and low pathogenic avian influenza in chickens and turkeys. Avian Dis. 2011, 55, 201–211. [Google Scholar] [CrossRef]
- Kim, S.H.; Samal, S.K. Innovation in newcastle disease virus vectored avian influenza vaccines. Viruses 2019, 11, 300. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Elankumaran, S.; Yunus, A.S.; Samal, S.K. A recombinant Newcastle disease virus (NDV) expressing VP2 protein of infectious bursal disease virus (IBDV) protects against NDV and IBDV. J. Virol. 2004, 78, 10054–10063. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Wang, X.; Tao, L.; Wen, Z.; Feng, N.; Yang, S.; Xia, X.; Yang, C.; Chen, H.; Bu, Z. Newcastle Disease Virus-Vectored Rabies Vaccine Is Safe, Highly Immunogenic, and Provides Long-Lasting Protection in Dogs and Cats. J. Virol. 2011, 85, 8241–8252. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cong, Y.; Yin, R.; Feng, N.; Yang, S.; Xia, X.; Xiao, Y.; Wang, W.; Liu, X.; Hu, S.; et al. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings. Virus Res. 2015, 203, 77–83. [Google Scholar] [CrossRef]
- Khattar, S.K.; Samal, S.; Devico, A.L.; Collins, P.L.; Samal, S.K. Newcastle disease virus expressing human immunodeficiency virus type 1 envelope glycoprotein induces strong mucosal and serum antibody responses in Guinea pigs. J. Virol. 2011, 85, 10529–10541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, J.; Ge, J.; Hua, R.; Liu, R.; Li, X.; Wang, X.; Shao, Y. Newcastle disease virus-vectored West Nile fever vaccine is immunogenic in mammals and poultry. Virol. J. 2016, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Sobrido, L.; Gitiban, N.; Fernandez-Sesma, A.; Cros, J.; Mertz, S.E.; Jewell, N.A.; Hammond, S.; Flano, E.; Durbin, R.K.; García-Sastre, A.; et al. Protection against respiratory syncytial virus by a recombinant Newcastle disease virus vector. J. Virol. 2006, 80, 1130–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, D.; Wen, Z.; Su, H.; Ge, J.; Chen, W.; Wang, X.; Wu, C.; Yang, C.; Chen, H.; Bu, Z. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology 2012, 432, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ge, J.; Li, X.; Chen, W.; Wang, X.; Wen, Z.; Bu, Z. Protective efficacy of a recombinant Newcastle disease virus expressing glycoprotein of vesicular stomatitis virus in mice. Virol. J. 2016, 13, 31. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Chen, S.; Jiang, X.; Green, K.Y.; Samal, S.K. Newcastle Disease Virus Vector Producing Human Norovirus-Like Particles Induces Serum, Cellular, and Mucosal Immune Responses in Mice. J. Virol. 2014, 88, 9718–9727. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Wang, X.; Tian, M.; Gao, Y.; Wen, Z.; Yu, G.; Zhou, W.; Zu, S.; Bu, Z. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks. Vaccine 2015, 33, 2457–2462. [Google Scholar] [CrossRef]
- Wen, Z.; Zhao, B.; Song, K.; Hu, X.; Chen, W.; Kong, D.; Ge, J.; Bu, Z. Recombinant lentogenic Newcastle disease virus expressing Ebola virus GP infects cells independently of exogenous trypsin and uses macropinocytosis as the major pathway for cell entry. Virol. J. 2013, 10, 331. [Google Scholar] [CrossRef] [Green Version]
- DiNapoli, J.M.; Yang, L.; Samal, S.K.; Murphy, B.R.; Collins, P.L.; Bukreyev, A. Respiratory tract immunization of non-human primates with a Newcastle disease virus-vectored vaccine candidate against Ebola virus elicits a neutralizing antibody response. Vaccine 2010, 29, 17–25. [Google Scholar] [CrossRef]
- Bukreyev, A.; Huang, Z.; Yang, L.; Elankumaran, S.; St. Claire, M.; Murphy, B.R.; Samal, S.K.; Collins, P.L. Recombinant Newcastle Disease Virus Expressing a Foreign Viral Antigen is Attenuated and Highly Immunogenic in Primates. J. Virol. 2005, 79, 13275–13284. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Roth, J.P.; Hu, H.; Estevez, C.N.; Zhao, W.; Zsak, L. Protection by Recombinant Newcastle Disease Viruses (NDV) Expressing the Glycoprotein (G) of Avian Metapneumovirus (aMPV) Subtype A or B against Challenge with Virulent NDV and aMPV. World J. Vaccines 2013, 3, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Wen, G.; Chen, C.; Guo, J.; Zhang, Z.; Shang, Y.; Shao, H.; Luo, Q.; Yang, J.; Wang, H.; Wang, H.; et al. Development of a novel thermostable Newcastle disease virus vaccine vector for expression of a heterologous gene. J. Gen. Virol. 2015, 96, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.D.; Drew, J. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. 1994, 13, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Stobart, C.C.; Moore, M.L. RNA virus reverse genetics and vaccine design. Viruses 2014, 6, 2531–2550. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Hu, S.; Meng, C.; Wang, X.; Zhu, J.; Liu, X. Generation of a Genotype VII Newcastle Disease Virus Vaccine Candidate with High Yield in Embryonated Chicken Eggs. Avian Dis. Dig. 2011, 6, e7–e8. [Google Scholar] [CrossRef]
- Xiao, S.; Nayak, B.; Samuel, A.; Paldurai, A.; Kanabagattebasavarajappa, M.; Prajitno, T.Y.; Bharoto, E.E.; Collins, P.L.; Samal, S.K. Generation by Reverse Genetics of an Effective, Stable, Live-Attenuated Newcastle Disease Virus Vaccine Based on a Currently Circulating, Highly Virulent Indonesian Strain. PLoS ONE 2012, 7, e52751. [Google Scholar] [CrossRef] [Green Version]
- Roohani, K.; Tan, S.W.; Yeap, S.K.; Ideris, A.; Bejo, M.H.; Omar, A.R. Characterisation of genotype VII Newcastle disease virus (NDV) isolated from NDV vaccinated chickens, and the efficacy of LaSota and recombinant genotype VII vaccines against challenge with velogenic NDV. J. Vet. Sci. 2015, 16, 447–457. [Google Scholar] [CrossRef]
- Hutchinson, E.C. Influenza Virus. Trends Microbiol. 2018, 26, 809–810. [Google Scholar] [CrossRef]
- Lee, C.W.; Saif, Y.M. Avian influenza virus. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 301–310. [Google Scholar] [CrossRef]
- Swayne, D.E. Avian influenza vaccines and therapies for poultry. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 351–363. [Google Scholar] [CrossRef]
- Suarez, D.L.; Pantin-Jackwood, M.J. Recombinant viral-vectored vaccines for the control of avian influenza in poultry. Vet. Microbiol. 2017, 206, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Steel, J.; García-Sastre, A.; Swayne, D.; Palese, P. Engineered viral vaccine constructs with dual specificity: Avian influenza and Newcastle disease. Proc. Natl. Acad. Sci. USA 2006, 103, 8203–8208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, I.; Ma, J.; Bawa, B.; Krammer, F.; Lyoo, Y.S.; Lang, Y.; Morozov, I.; Mahardika, G.N.; Ma, W.; Garcia-Sastre, A.; et al. Newcastle Disease Virus-Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with H7N9 or H5N1 Avian Influenza Viruses. J. Virol. 2015, 89, 7401–7408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colvero, L.P.; Villarreal, L.Y.B.; Torres, C.A.; Brañdo, P.E. Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil. Rev. Sci. Tech. 2015, 34, 993–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bande, F.; Arshad, S.S.; Hair Bejo, M.; Moeini, H.; Omar, A.R. Progress and challenges toward the development of vaccines against avian infectious bronchitis. J. Immunol. Res. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- McKinley, E.T.; Hilt, D.A.; Jackwood, M.W. Avian coronavirus infectious bronchitis attenuated live vaccines undergo selection of subpopulations and mutations following vaccination. Vaccine 2008, 26, 1274–1284. [Google Scholar] [CrossRef]
- Bickerton, E.; Keep, S.M.; Britton, P. Reverse genetics system for the avian coronavirus infectious bronchitis virus. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1602, pp. 83–102. ISBN 0022-538X. [Google Scholar]
- Abozeid, H.H.; Paldurai, A.; Varghese, B.P.; Khattar, S.K.; Afifi, M.A.; Zouelfakkar, S.; El-Deeb, A.H.; El-Kady, M.F.; Samal, S.K. Development of a recombinant Newcastle disease virus-vectored vaccine for infectious bronchitis virus variant strains circulating in Egypt. Vet. Res. 2019, 50, 12. [Google Scholar] [CrossRef]
- Sharma, J.M.; Kim, I.J.; Rautenschlein, S.; Yeh, H.Y. Infectious bursal disease virus of chickens: Pathogenesis and immunosuppression. Dev. Comp. Immunol. 2000, 24, 223–235. [Google Scholar] [CrossRef]
- Morla, S.; Deka, P.; Kumar, S. Isolation of novel variants of infectious bursal disease virus from different outbreaks in Northeast India. Microb. Pathog. 2016, 93, 131–136. [Google Scholar] [CrossRef]
- Adamu, J.; Owoade, A.A.; Abdu, P.A.; Kazeem, H.M.; Fatihu, M.Y. Characterization of field and vaccine infectious bursal disease viruses from Nigeria revealing possible virulence and regional markers in the VP2 minor hydrophilic peaks. Avian Pathol. 2013, 42, 420–433. [Google Scholar] [CrossRef]
- Wang, X.-N.; Zhang, G.-P.; Zhou, J.-Y.; Feng, C.-H.; Yang, Y.-Y.; Li, Q.-M.; Guo, J.-Q.; Qiao, H.-X.; Xi, J.; Zhao, D.; et al. Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral Immunol. 2005, 18, 549–557. [Google Scholar] [CrossRef]
- Broor, S.; Bharaj, P. Avian and human metapneumovirus. Proc. Ann. N. Y. Acad. Sci. 2007, 1102, 66–85. [Google Scholar] [CrossRef]
- Cecchinato, M.; Catelli, E.; Lupini, C.; Ricchizzi, E.; Prosperi, S.; Naylor, C.J. Reversion to virulence of a subtype B avian metapneumovirus vaccine: Is it time for regulators to require availability of vaccine progenitors? Vaccine 2014, 32, 4660–4664. [Google Scholar] [CrossRef]
- Irvine, R.; Holmes, P. Diagnosis and control of goose parvovirus. Practice 2010, 32, 382–386. [Google Scholar] [CrossRef]
- Ou, S.-C. Infectious laryngotracheitis virus in chickens. World J. Virol. 2012, 1, 142. [Google Scholar] [CrossRef]
- Fulton, R.M.; Schrader, D.L.; Will, M. Effect of route of vaccination on the prevention of infectious laryngotracheitis in commercial egg-laying chickens. Avian Dis. 2009, 44, 8–16. [Google Scholar] [CrossRef]
- Coppo, M.J.C.; Noormohammadi, A.H.; Browning, G.F.; Devlin, J.M. Challenges and recent advancements in infectious laryngotracheitis virus vaccines. Avian Pathol. 2013, 42, 195–205. [Google Scholar] [CrossRef]
- Johnson, D.I.; Vagnozzi, A.; Dorea, F.; Riblet, S.M.; Mundt, A.; Zavala, G.; García, M. Protection Against Infectious Laryngotracheitis by In Ovo Vaccination with Commercially Available Viral Vector Recombinant Vaccines. Avian Dis. Dig. 2010, 54, 1251–1259. [Google Scholar] [CrossRef]
- Kanabagatte Basavarajappa, M.; Kumar, S.; Khattar, S.K.; Gebreluul, G.T.; Paldurai, A.; Samal, S.K. A recombinant Newcastle disease virus (NDV) expressing infectious laryngotracheitis virus (ILTV) surface glycoprotein D protects against highly virulent ILTV and NDV challenges in chickens. Vaccine 2014, 32, 3555–3563. [Google Scholar] [CrossRef]
- Lu, L.; Liu, Q.; Du, L.; Jiang, S. Middle East respiratory syndrome coronavirus (MERS-CoV): Challenges in identifying its source and controlling its spread. Microbes Infect. 2013, 15, 625–629. [Google Scholar] [CrossRef]
- Du, L.; Han, G.Z. Deciphering MERS-CoV Evolution in Dromedary Camels. Trends Microbiol. 2016, 24, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Chughtai, A.A.; Dyda, A.; MacIntyre, C.R. Comparative epidemiology of Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia and South Korea. Emerg. Microbes Infect. 2017, 6, e51. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.; Negi, B.S. Bovine ephemeral fever: A review. Comp. Immunol. Microbiol. Infect. Dis. 1999, 22, 81–91. [Google Scholar] [CrossRef]
- Walker, P.J.; Klement, E. Epidemiology and control of bovine ephemeral fever. Vet. Res. 2015, 46, 124. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.A. Bovine herpes virus-1 (BoHV-1) in cattle–a review with emphasis on reproductive impacts and the emergence of infection in Ireland and the United Kingdom. Ir. Vet. J. 2013, 66, 15. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.; Kumar, M.; Manohar, M.; Chauhan, R.S. Bovine herpes virus infections in cattle. Anim. Heal. Res. Rev. 2009, 10, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Patel, J.R. Characteristics of live bovine herpesvirus-1 vaccines. Vet. J. 2005, 169, 404–416. [Google Scholar] [CrossRef]
- Peralta, A.; Molinari, P.; Conte-Grand, D.; Calamante, G.; Taboga, O. A chimeric baculovirus displaying bovine herpesvirus-1 (BHV-1) glycoprotein D on its surface and their immunological properties. Appl. Microbiol. Biotechnol. 2007, 75, 407–414. [Google Scholar] [CrossRef]
- Pérez Filgueira, D.M.; Zamorano, P.I.; Domínguez, M.G.; Taboga, O.; Del Médico Zajac, M.P.; Puntel, M.; Romera, S.A.; Morris, T.J.; Borca, M.V.; Sadir, A.M. Bovine herpes virus gD protein produced in plants using a recombinant tobacco mosaic virus (TMV) vector possesses authentic antigenicity. Vaccine 2003, 21, 4201–4209. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Samal, S.K. Newcastle disease virus as a vaccine vector for development of human and veterinary vaccines. Viruses 2016, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Flick, R.; Bouloy, M. Rift Valley fever virus. Curr. Mol. Med. 2005, 5, 827–834. [Google Scholar] [CrossRef]
- Ikegami, T.; Makino, S. Rift Valley fever vaccines. Vaccine 2009, 27, D69–D72. [Google Scholar] [CrossRef] [Green Version]
- Faburay, B.; LaBeaud, A.D.; McVey, D.S.; Wilson, W.C.; Richt, J.A. Current status of rift valley fever vaccine development. Vaccines 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Rikula, U.; Pänkälä, L.; Jalkanen, L.; Sihvonen, L. Distemper vaccination of farmed fur animals in Finland. Prev. Vet. Med. 2001, 49, 125–133. [Google Scholar] [CrossRef]
- Van Heerden, J.; Bingham, J.; van Vuuren, M.; Burroughs, R.E.J.; Stylianides, E. Clinical and serological response of wild dogs (Lycaon pictus) to vaccination against canine distemper, canine parvovirus infection and rabies. J. S. Afr. Vet. Assoc. 2002, 73, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Udow, S.J.; Marrie, R.A.; Jackson, A.C. Clinical features of dog- and bat-acquired rabies in humans. Clin. Infect. Dis. 2013, 57, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Susilawathi, N.M.; Darwinata, A.E.; Dwija, I.B.N.P.; Budayanti, N.S.; Wirasandhi, G.A.K.; Subrata, K.; Susilarini, N.K.; Sudewi, R.A.A.; Wignall, F.S.; Mahardika, G.N.K. Epidemiological and clinical features of human rabies cases in Bali 2008–2010. BMC Infect. Dis. 2012, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- Cleaveland, S.; Kaare, M.; Knobel, D.; Laurenson, M.K. Canine vaccination-Providing broader benefits for disease control. Vet. Microbiol. 2006, 117, 43–50. [Google Scholar] [CrossRef]
- Brochier, B.; Blancou, J.; Thomas, I.; Languet, B.; Artois, M.; Kieny, M.P.; Lecocq, J.P.; Costy, F.; Desmettre, P.; Chappuis, G.; et al. Use of recombinant vaccinia-rabies glycoprotein virus for oral vaccination of wildlife against rabies: Innocuity to several non-target bait consuming species. J.Wildl.Dis. 1989, 25, 540–547. [Google Scholar] [CrossRef]
- Qureshi, A.I. Ebola Virus Disease. In Ebola Virus Disease; Academic Press: Cambridge, MA, USA, 2016; pp. 139–157. ISBN 9780128042304. [Google Scholar]
- Venkatraman, N.; Silman, D.; Folegatti, P.M.; Hill, A.V.S. Vaccines against Ebola virus. Vaccine 2017, 36, 5454–5459. [Google Scholar] [CrossRef]
- Papaneri, A.B.; Wirblich, C.; Cann, J.A.; Cooper, K.; Jahrling, P.B.; Schnell, M.J.; Blaney, J.E. A replication-deficient rabies virus vaccine expressing Ebola virus glycoprotein is highly attenuated for neurovirulence. Virology 2012, 434, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Pushko, P.; Bray, M.; Ludwig, G.V.; Parker, M.; Schmaljohn, A.; Sanchez, A.; Jahrling, P.B.; Smith, J.F. Recombinant RNA replicons derived from attenuated Venezuelan equine encephalitis virus protect guinea pigs and mice from Ebola hemorrhagic fever virus. Vaccine 2000, 19, 142–153. [Google Scholar] [CrossRef]
- Duan, Z.; Xu, H.; Ji, X.; Zhao, J. Recombinant Newcastle disease virus- vectored vaccines against human and animal infectious diseases. Future Microbiol. 2015, 10, 1307–1323. [Google Scholar] [CrossRef]
- Sheppard, H. Inactivated- or Killed-Virus HIV/AIDS Vaccines. Curr. Drug Target Infect. Disord. 2005, 5, 131–141. [Google Scholar] [CrossRef]
- Nanjundappa, R.H.; Wang, R.; Xie, Y.; Umeshappa, C.S.; Xiang, J. Novel CD8 + T cell-based vaccine stimulates Gp120-specific CTL responses leading to therapeutic and long-term immunity in transgenic HLA-A2 mice. Vaccine 2012, 30, 3519–3525. [Google Scholar] [CrossRef]
- Khattar, S.K.; Palaniyandi, S.; Samal, S.; Labranche, C.C.; Montefiori, D.C.; Zhu, X.; Samal, S.K. Evaluation of humoral, mucosal, and cellular immune responses following co-immunization of HIV-1 gag and Env proteins expressed by newcastle disease virus. Hum. Vaccines Immunother. 2015, 11, 504–515. [Google Scholar] [CrossRef]
- Tayeb, S.; Zakay-Rones, Z.; Panet, A. Therapeutic potential of oncolytic Newcastle disease virus: A critical review. Oncolytic Virother. 2015, 4, 49–62. [Google Scholar]
- Ravindra, P.V.; Tiwari, A.K.; Ratta, B.; Chaturvedi, U.; Palia, S.K.; Chauhan, R.S. Newcastle disease virus-induced cytopathic effect in infected cells is caused by apoptosis. Virus Res. 2009, 141, 13–20. [Google Scholar] [CrossRef]
- Lazar, I.; Yaacov, B.; Shiloach, T.; Eliahoo, E.; Kadouri, L.; Lotem, M.; Perlman, R.; Zakay-Rones, Z.; Panet, A.; Ben-Yehuda, D. The Oncolytic Activity of Newcastle Disease Virus NDV-HUJ on Chemoresistant Primary Melanoma Cells Is Dependent on the Proapoptotic Activity of the Inhibitor of Apoptosis Protein Livin. J. Virol. 2010, 84, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Washburn, B.; Weigand, M.A.; Grosse-Wilde, A.; Janke, M.; Stahl, H.; Rieser, E.; Sprick, M.R.; Schirrmacher, V.; Walczak, H. TNF-Related Apoptosis-Inducing Ligand Mediates Tumoricidal Activity of Human Monocytes Stimulated by Newcastle Disease Virus. J. Immunol. 2003, 170, 1814–1821. [Google Scholar] [CrossRef] [Green Version]
- Fabian, Z.; Csatary, C.M.; Szeberenyi, J.; Csatary, L.K. p53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines. J. Virol. 2007, 81, 2817–2830. [Google Scholar] [CrossRef] [Green Version]
- Zamarin, D.; Palese, P. Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiol. 2012, 7, 347–3675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigil, A.; Park, M.S.; Martinez, O.; Chua, M.A.; Xiao, S.; Cros, J.F.; Martínez-Sobrido, L.; Woo, S.L.C.; García-Sastre, A. Use of reverse genetics to enhance the oncolytic properties of newcastle disease virus. Cancer Res. 2007, 67, 8285–8292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamarin, D.; Martínez-Sobrido, L.; Kelly, K.; Mansour, M.; Sheng, G.; Vigil, A.; García-Sastre, A.; Palese, P.; Fong, Y. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol. Ther. 2009, 17, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Kalyanasundram, J.; Hamid, A.; Yusoff, K.; Chia, S.L. Newcastle disease virus strain AF2240 as an oncolytic virus: A review. Acta Trop. 2018, 183, 126–133. [Google Scholar] [CrossRef]
- Elankumaran, S.; Chavan, V.; Qiao, D.; Shobana, R.; Moorkanat, G.; Biswas, M.; Samal, S.K. Type I Interferon-Sensitive Recombinant Newcastle Disease Virus for Oncolytic Virotherapy. J. Virol. 2010, 84, 3835–3844. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; He, J.; An, Y.; Wang, X.; Liu, Y.; Yan, S.; Ye, X.; Qi, J.; Zhu, S.; Yu, Q.; et al. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppressing growth of hepatoma therapy. J. Pharmacol. Sci. 2016, 132, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Ren, G.; Tian, G.; Liu, Y.; He, J.; Gao, X.; Yu, Y.; Liu, X.; Zhang, X.; Sun, T.; Liu, S.; et al. Recombinant Newcastle Disease Virus Encoding IL-12 and/or IL-2 as Potential Candidate for Hepatoma Carcinoma Therapy. Technol. Cancer Res. Treat. 2016, 15, NP83–NP94. [Google Scholar] [CrossRef] [Green Version]
- Mohamed Amin, Z.; Che Ani, M.A.; Tan, S.W.; Yeap, S.K.; Alitheen, N.B.; Syed Najmuddin, S.U.F.; Kalyanasundram, J.; Chan, S.C.; Veerakumarasivam, A.; Chia, S.L.; et al. Evaluation of a Recombinant Newcastle Disease Virus Expressing Human IL12 against Human Breast Cancer. Sci. Rep. 2019, 9, 13999. [Google Scholar]
- Janke, M.; Peeters, B.; de Leeuw, O.; Moorman, R.; Arnold, A.; Fournier, P.; Schirrmacher, V. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Ther. 2007, 14, 1639–1649. [Google Scholar] [CrossRef]
- Xu, X.; Yi, C.; Yang, X.; Xu, J.; Sun, Q.; Liu, Y.; Zhao, L. Tumor Cells Modified with Newcastle Disease Virus Expressing IL-24 as a Cancer Vaccine. Mol. Ther. Oncolytics 2019, 14, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Elankumaran, S.; Rockemann, D.; Samal, S.K. Newcastle Disease Virus Exerts Oncolysis by both Intrinsic and Extrinsic Caspase-Dependent Pathways of Cell Death. J. Virol. 2006, 80, 7522–7534. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Wang, W.; Xu, Q.; Harper, J.; Carroll, D. Genetic modification of oncolytic Newcastle disease virus for cancer therapy. J. Virol. 2016, 90, 5343–5352. [Google Scholar] [CrossRef] [Green Version]
- Pühler, F.; Willuda, J.; Puhlmann, J.; Mumberg, D.; Römer-Oberdörfer, A.; Beier, R. Generation of a recombinant oncolytic Newcastle disease virus and expression of a full IgG antibody from two transgenes. Gene Ther. 2008, 15, 371–383. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Wang, X.; Wang, L.; Hu, S.; Liu, X.; Meng, S. Apoptin enhances the oncolytic properties of newcastle disease virus. Intervirology 2012, 55, 276–286. [Google Scholar] [CrossRef]
- Bello, M.B.; Yusoff, K.M.; Ideris, A.; Hair-Bejo, M.; Peeters, B.P.H.; Jibril, A.H.; Tambuwal, F.M.; Omar, A.R. Genotype Diversity of Newcastle Disease Virus in Nigeria: Disease Control Challenges and Future Outlook. Adv. Virol. 2018. [Google Scholar] [CrossRef] [Green Version]
- Rasoli, M.; Yeap, S.K.; Tan, S.W.; Moeini, H.; Ideris, A.; Bejo, M.H.; Alitheen, N.B.M.; Kaiser, P.; Omar, A.R. Alteration in lymphocyte responses, cytokine and chemokine profiles in chickens infected with genotype VII and VIII velogenic Newcastle disease virus. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 11–21. [Google Scholar] [CrossRef]
- Ravindra, P.V.; Tiwari, A.K.; Sharma, B.; Chauhan, R.S. Newcastle disease virus as an oncolytic agent. Indian J. Med. Res. 2009, 130, 507–513. [Google Scholar]
Host | Disease | Immunogen | NDV Backbone | Type of Immunity | Reference |
---|---|---|---|---|---|
Monkeys | Severe acute respiratory syndrome | SARS-CoV S | Beaudette C | SARS-CoV S-specific CD8+ T cells | [49] |
Camel | Middle east respiratory syndrome | MERS-CoV S | LaSota | Neutralizing antibodies | [50] |
Cattle | Rift valley fever | RVFV Gn | LaSota | Neutralizing antibodies | [51] |
Cattle | Infectious bovine rhinotracheitis | BHV-1 gD | LaSota | Neutralizing IgG and IgA | [52] |
Cattle | Bovine ephemeral fever | BEFV G | Lasota | Neutralizing antibodies | [53] |
Chicken | Infectious bronchitis | IBV S1 or full S | Lasota | CD4+ and CD8+ cells; Neutralizing antibodies | [42,54] |
Chicken | Infectious laryngotracheitis | ILTV gD | Lasota | Neutralizing antibodies | [55] |
Chicken | Highly pathogenic avian influenza | H5, H7, H9 | Lasota | Neutralizing antibodies | [56,57] |
Chicken | Infectious bursal disease | IBDV VP2 | Lasota | - | [58] |
Dogs and cats | Rabies | RV G | Lasota | Neutralizing antibodies | [59] |
Goose | Gosling plaque | VP3 of goose parvovirus | NA-1 | Neutralizing antibodies | [60] |
Guinea pigs | Acquired immune deficiency syndrome | HIV gp160 | Lasota | Neutralizing antibodies | [61] |
Horse | West Nile fever | WNV PrM/E | Lasota | CD4+ and CD8+ cells; Neutralizing IgG | [62] |
Mice | Acute pneumonia | RSV F | Hitchner B1 | CD8+ cells | [63] |
Mice | Nipah encephalitis | Nipah virus G and F | Lasota | T and B cells; Neutralizing antibodies | [64] |
Mice | Vesicular stomatitis | VSV G | LaSota | Neutralizing antibodies | [65] |
Mice | Viral gastroenteritis | NV VP1 | LaSota and Beaudette C | CD8+ cells; Neutralizing antibodies | [66] |
Minks | Canine distemper | CDV F and HN | LaSota | Neutralizing antibodies | [67] |
Monkey | Ebola | EBOV GP | Beaudette C | CD8+ cells: virus specific IgA, and IgG | [68,69] |
Pigs | Nipah encephalitis | Nipah virus G and F | LaSota | T and B cells; Neutralizing antibodies | [64] |
Monkeys | Parainfluenza | HPIV3 HN | Beaudette C | Neutralizing antibodies | [70] |
Turkey | Turkeys rhinotracheitis | F and G of AMPV type CG of AMPV type A and B | LaSota | Neutralizing antibodies | [48,71] |
NDV Strain | Genetic Modification | In Vitro Effects | In Vivo Effects | Reference | |
---|---|---|---|---|---|
1. | NDV Lasota | Change of F cleavage site from monobasic to polybasic | Enhanced oncolysis of neuroblastoma cells via intrinsic and extrinsic caspase independent pathways | Not done | [144] |
2. | NDV Lasota | Expression of GM-CSF | Induction of strong interferon response in PBMC; Substantial tumor growth inhibition caused by vaccine cells modified with the virus | Not done | [142] |
3. | NDV Hitchner B1 | Modification of F cleavage site and insertion of influenza NS1 gene | Profound cytotoxicity on human myeloma cell line SKMel-2 and mouse melanoma cell line B16-F10 | i. Infiltration of CD4 and CD8 positive cells ii. suppression of mouse footpad melanoma growth | [136] |
4. | NDV Hitchner B1 | Modification of F cleavage site and insertion of IL2 | Not done | Complete colon cancer regression characterized by marked T cell infiltration in mice | [135] |
5. | NDV-HUJ | Change of F cleavage site from polybasic to monobasic | Enhanced apoptosis of chemoresistant primary melanoma cells | Not done | [131] |
6. | NDV Beaudette C | Truncation of V protein expression | Not done | Complete regression of duodenum adenocarcinoma in Balb/c mice | [138] |
7. | Clone 30 | Expression of IL2 and IL12 | Enhanced tumor cell death on U251, HepG2, Hela, and A549 cells | Enhanced oncolytic effect on hepatocarcinoma in mouse | [140] |
8. | NDV 73-T | Change of cleavage site from monobasic to polybasic; Insertion of 198 nucleotides at the HN-L junction | Enhanced oncolytic effect on CCD1125 and HT1080 cells | Inhibition of tumor growth in HT1080 xenograft mouse tumor model | [145] |
9. | NDV MTH68 | Expression of heavy and light chains of monoclonal antibody directed against Edb fibronectin antigen | Enhanced tumor selective cytotoxicity on HT 29 colon cancer cells | Not done | [146] |
10. | FMW | Expression of chicken infectious anaemia virus proapoptotic protein | Enhanced killing of adenocarcinomic human alveolar cells | Significant regression of treated tumor | [147] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bello, M.B.; Yusoff, K.; Ideris, A.; Hair-Bejo, M.; Jibril, A.H.; Peeters, B.P.H.; Omar, A.R. Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology. Viruses 2020, 12, 451. https://doi.org/10.3390/v12040451
Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Jibril AH, Peeters BPH, Omar AR. Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology. Viruses. 2020; 12(4):451. https://doi.org/10.3390/v12040451
Chicago/Turabian StyleBello, Muhammad Bashir, Khatijah Yusoff, Aini Ideris, Mohd Hair-Bejo, Abdurrahman Hassan Jibril, Ben P. H. Peeters, and Abdul Rahman Omar. 2020. "Exploring the Prospects of Engineered Newcastle Disease Virus in Modern Vaccinology" Viruses 12, no. 4: 451. https://doi.org/10.3390/v12040451