Vaccine Related Immune Responses 2.0

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Innate and Adaptive Immunity in Vaccination".

Deadline for manuscript submissions: closed (15 May 2023) | Viewed by 5148

Special Issue Editor


E-Mail Website
Guest Editor
National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
Interests: autophagy; neutrophils; MHC-restriction of T cells; autoimmunity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The use of vaccination to prevent infectious diseases was described long before establishing the fundamental dogmas of the immune system. Most vaccines work by mimicking infections. Vaccines activate the immune system and generate memory T and B lymphocytes that "remember" the disease-causing agents. Upon encountering these pathogens later, the immune system will mount a rapid and robust immune response to antigens it has previously experienced, thereby preventing disease or reducing its severity. The initial response to a vaccine is similar to the primary response upon first exposure to a pathogen—that is, slow and limited. Subsequent doses of the vaccine boost the immune response, resulting in the production of long-lived antibodies and memory cells. For most vaccines, more than one dose is necessary to provide long-lasting protection.

Since the advent of recombinant DNA technology, vaccines have become the mainstay of protection against several infectious and non-infectious diseases. How a vaccine stimulates the immune system depends on many factors, such as the nature of the antigens, the route of administration, and the adjuvants present in the vaccines. The nature of the adjuvants is fundamental to determining the type, duration, and intensity of the primary response, and the characteristics of the resulting antigen-specific memory.

This Special Issue aims to collect recent research related to vaccine-related immune responses, including recent advances in mRNA vaccines. We hope to provide a broad overview of how different vaccines work and help readers to understand some new techniques and their utilization in vaccinology.

Dr. Abhisek Bhattacharya
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • immune response
  • immune system
  • techniques
  • vaccinology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

17 pages, 373 KiB  
Review
An Immunological Review of SARS-CoV-2 Infection and Vaccine Serology: Innate and Adaptive Responses to mRNA, Adenovirus, Inactivated and Protein Subunit Vaccines
by Suhaila A. Al-Sheboul, Brent Brown, Yasemin Shboul, Ingo Fricke, Chinua Imarogbe and Karem H. Alzoubi
Vaccines 2023, 11(1), 51; https://doi.org/10.3390/vaccines11010051 - 26 Dec 2022
Cited by 11 | Viewed by 4739
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which is defined by its positive-sense single-stranded RNA (ssRNA) structure. It is in the order Nidovirales, suborder Coronaviridae, genus Betacoronavirus, and sub-genus Sarbecovirus (lineage B), [...] Read more.
The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which is defined by its positive-sense single-stranded RNA (ssRNA) structure. It is in the order Nidovirales, suborder Coronaviridae, genus Betacoronavirus, and sub-genus Sarbecovirus (lineage B), together with two bat-derived strains with a 96% genomic homology with other bat coronaviruses (BatCoVand RaTG13). Thus far, two Alphacoronavirus strains, HCoV-229E and HCoV-NL63, along with five Betacoronaviruses, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2, have been recognized as human coronaviruses (HCoVs). SARS-CoV-2 has resulted in more than six million deaths worldwide since late 2019. The appearance of this novel virus is defined by its high and variable transmission rate (RT) and coexisting asymptomatic and symptomatic propagation within and across animal populations, which has a longer-lasting impact. Most current therapeutic methods aim to reduce the severity of COVID-19 hospitalization and virus symptoms, preventing the infection from progressing from acute to chronic in vulnerable populations. Now, pharmacological interventions including vaccines and others exist, with research ongoing. The only ethical approach to developing herd immunity is to develop and provide vaccines and therapeutics that can potentially improve on the innate and adaptive system responses at the same time. Therefore, several vaccines have been developed to provide acquired immunity to SARS-CoV-2 induced COVID-19-disease. The initial evaluations of the COVID-19 vaccines began in around 2020, followed by clinical trials carried out during the pandemic with ongoing population adverse effect monitoring by respective regulatory agencies. Therefore, durability and immunity provided by current vaccines requires further characterization with more extensive available data, as is presented in this paper. When utilized globally, these vaccines may create an unidentified pattern of antibody responses or memory B and T cell responses that need to be further researched, some of which can now be compared within laboratory and population studies here. Several COVID-19 vaccine immunogens have been presented in clinical trials to assess their safety and efficacy, inducing cellular antibody production through cellular B and T cell interactions that protect against infection. This response is defined by virus-specific antibodies (anti-N or anti-S antibodies), with B and T cell characterization undergoing extensive research. In this article, we review four types of contemporary COVID-19 vaccines, comparing their antibody profiles and cellular aspects involved in coronavirus immunology across several population studies. Full article
(This article belongs to the Special Issue Vaccine Related Immune Responses 2.0)
Back to TopTop