New Insights into Structure and Function of Arthropod Toxins and Other Toxins: Tribute to Professor Hervé Rochat

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Animal Venoms".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 11775

Special Issue Editors


E-Mail Website
Guest Editor
Faculdade Santa Casa de Belo Horizonte – Programa de Pós Graduação em Medicina e Biomedicina, Belo Horizonte, Brazil
Interests: toxins; biotechnology; spider venom; antimicrobial toxins; toxins and pain; anticancer toxins; toxins and therapeutic; arthropod toxins; animal venoms; toxin active in erectile function
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CNRS, UMR 7275, IPMC, 660 Route des Lucioles, 06560 Valbonne-Sophia Antipolis, France
Interests: functional studies of voltage-gated sodium channel mutations implicated in migraine; epilepsy; autism and intellectual disability

Special Issue Information

Dear Colleagues,

This Special Issue is in honor of the late Professor Hervé Rochat. It aims to showcase new research on the structure and function of different venoms, especially arthropod venoms. Professor Hervé Rochat, who passed away in January 2023, was a pioneer in the field of toxins and was passionate about it throughout his scientific career. The work accomplished in his lab has been an inspiration for many scientists around the world. It has allowed key discoveries not only on the structure–function relationship of animal toxins, but also on the function of their targets, particularly ion channels. His lab has developed several skills to tackle the understanding of the structure–function relationship of toxins, starting from a biochemical point of view: purification, amino acid analysis and elucidation of the primary, secondary and tertiary structures. Subsequently, more insights were obtained with pharmacological and immunological experiments. It is important to point out that Prof. Hervé Rochat’s laboratory developed cutting-edge techniques that enabled innovative and outstanding research to be conducted. For these reasons, Prof. Hervé Rochat attracted researchers and students from all the continents by contributing to their training practices. Moreover, being a great mentor, he supported these researchers to pursue these studies in their countries and to develop their own laboratories. Many of us are glad for being part of his team and are grateful for his immense support. We believe that good science lives and evolves through generations and that our role is to pursue it, drawing inspiration from our masters. This is certainly the main tribute we can pay to them.

Prof. Dr. Maria Elena De Lima
Dr. Sandrine Cestèle
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • peptide
  • venom
  • toxin
  • ion channels

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 1929 KiB  
Article
Molecular Diversity and Isoform Evolution in Tityus obscurus Venom: Insights from Proteomic Analysis
by Kemellyn Cristina Panchera, Lais Campelo Mendes, Ana Leonor Abrahão Nencioni, Daniel Carvalho Pimenta and Emídio Beraldo-Neto
Toxins 2025, 17(5), 210; https://doi.org/10.3390/toxins17050210 - 23 Apr 2025
Viewed by 168
Abstract
Over millions of years of evolution, natural selection has driven the specialization of predatory and defensive mechanisms in various animal species through the development of poisons and venoms. These venoms contain highly specific and selective molecules for several different targets according to the [...] Read more.
Over millions of years of evolution, natural selection has driven the specialization of predatory and defensive mechanisms in various animal species through the development of poisons and venoms. These venoms contain highly specific and selective molecules for several different targets according to the habitat and behavior of each species. In this work, we performed a comprehensive proteomic analysis of Tityus obscurus venom, identifying 45 proteins, including 8 toxins targeting K+ channels, 22 targeting Na+ channels, and 15 other venom components. Our study reveals seven novel isoforms of ion channel-targeting peptides characterized by amino acid substitutions which may influence their bioactivity and pharmacological properties. These findings contribute to our understanding of venom molecular diversity and evolution, providing new insights into peptide structure–function relationships. Considering the biomedical relevance of ion channel-modulating toxins, our work expands the repertoire of potential candidates for future drug development, particularly in the context of neuropharmacology and ion channel disorders. Full article
Show Figures

Figure 1

16 pages, 3946 KiB  
Article
The First K+-Channel Blocker Described from Tityus fasciolatus Venom: The Purification, Molecular Cloning, and Functional Characterization of α-KTx4.9 (Tf5)
by Isolda de Sousa Monteiro, Israel Flor Silva de Araújo, Thalita Soares Camargos, Ernesto Ortiz, Adolfo Carlos Barros de Souza, Jonathan Dias Lima, Lourival D. Possani, Elisabeth Ferroni Schwartz and Diogo Vieira Tibery
Toxins 2025, 17(2), 96; https://doi.org/10.3390/toxins17020096 - 18 Feb 2025
Viewed by 742
Abstract
Hundreds of toxins, particularly from scorpions of lesser medical significance, remain unknown, especially those from species endemic to specific ecosystems, such as Tityus fasciolatus. Their discovery could contribute to the development of new drugs for channelopathies and other diseases. Tf5 is a [...] Read more.
Hundreds of toxins, particularly from scorpions of lesser medical significance, remain unknown, especially those from species endemic to specific ecosystems, such as Tityus fasciolatus. Their discovery could contribute to the development of new drugs for channelopathies and other diseases. Tf5 is a new peptide that has been identified from the venom of Tityus fasciolatus, a scorpion species endemic to the Brazilian Cerrado ecosystem. A full-length cDNA sequence of the Tf5 gene was obtained through a previously constructed transcriptomic library, where an ORF (Open Reading Frame) sequence with a length of 180 was found, including the 37 aa mature KTx domain, which has six Cys residues. Tf5 was purified from the crude venom, resulting in a peptide with a molecular mass of 3983.95 Da. Its K+ channel blocker activity was evaluated on Kv1.1, Kv1.2, Kv1.3, and Kv1.4 subtypes. Of these Kv channels, the peptide demonstrated an ability to block Kv1.2 and Kv1.3 with an IC50 of 15.53 nM and 116.41 nM, respectively. Additionally, Tf5 shares a high degree of sequence identity with toxins from the α-KTx4 subfamily, which led to it being classified as α-KTx4.9. This is the first Kv channel blocker described from the T. fasciolatus scorpion. Full article
Show Figures

Graphical abstract

13 pages, 1661 KiB  
Article
Encapsulated LyeTx III Peptide: Cytotoxic Agent Isolated from Lycosa erythrognatha Spider Venom
by Daniel Moreira dos Santos, Livia Ramos Santiago, Nayara Araújo dos Santos, Wanderson Romão, Jarbas Magalhães Resende, Maria Elena de Lima, Márcia Helena Borges and Rosy Iara Maciel de Azambuja Ribeiro
Toxins 2025, 17(1), 32; https://doi.org/10.3390/toxins17010032 - 10 Jan 2025
Viewed by 1073
Abstract
The discovery of novel cytotoxic drugs is of paramount importance in contemporary medical research, particularly in the search for treatments with fewer side effects and higher specificity. Antimicrobial peptides are an interesting class of molecules for this endeavor. In this context, the LyeTx [...] Read more.
The discovery of novel cytotoxic drugs is of paramount importance in contemporary medical research, particularly in the search for treatments with fewer side effects and higher specificity. Antimicrobial peptides are an interesting class of molecules for this endeavor. In this context, the LyeTx III, a new peptide extracted from the venom of the Lycosa erythrognatha spider, stands out. The peptide exhibits typical antimicrobial traits: a positive net charge and amphipathic α -helix structure in lipid-like environments. Its unique sequence (GKAMKAIAKFLGR-NH2), identified via mass spectrometry and Edman degradation, shows limited similarity to existing peptides. Significantly, when liposome-encapsulated, LyeTx III demonstrates selective activity against tumor cells in culture. Our MTT results showed that the cytotoxicity of the peptide increased against HN13 cells when administered as liposomes, with their viability in HN13 cells alone being 98%, compared to 38% in liposome-encapsulated form. This finding underscores that the LyeTx III peptide may be a good candidate for the development of new drugs against cancer. Its activity when encapsulated is promising, as it can increase its half-life in the body and can also be targeted to specific tumors. Full article
Show Figures

Figure 1

15 pages, 2308 KiB  
Article
Thermoregulation Effects of Phoneutria nigriventer Isolated Toxins in Rats
by Carla Bogri Butkeraitis, Monica Viviana Abreu Falla and Ivo Lebrun
Toxins 2024, 16(9), 398; https://doi.org/10.3390/toxins16090398 - 18 Sep 2024
Viewed by 1222
Abstract
Body temperature is primarily regulated by the hypothalamus, ensuring proper metabolic function. Envenomation by Phoneutria nigriventer can cause symptoms such as hypothermia, hyperthermia, sweating, and shivering, all related to thermoregulation. This study aims to analyze and identify components of the venom that affect [...] Read more.
Body temperature is primarily regulated by the hypothalamus, ensuring proper metabolic function. Envenomation by Phoneutria nigriventer can cause symptoms such as hypothermia, hyperthermia, sweating, and shivering, all related to thermoregulation. This study aims to analyze and identify components of the venom that affect thermoregulation and to evaluate possible mechanisms. Rats were used for thermoregulation analysis, venom fractionation by gel filtration and reverse-phase chromatography (C18), and sequencing by Edman degradation. The venom exhibited hypothermic effects in rats, while its fractions demonstrated both hypothermic (pool II) and hyperthermic (pool III) effects. Further separations of the pools with C18 identified specific peaks responsible for these effects. However, as the peaks were further purified, their effects became less significant. Tests on U87 human glioblastoma cells showed no toxicity. Sequencing of the most active peaks revealed masses similar to those of the Tachykinin and Ctenotoxin families, both known to act on the nervous system. The study concludes that molecules derived from venom can act synergistically or antagonistically. Additionally, toxins that affect thermoregulation are poorly studied and require further characterization. These toxins could potentially serve as sources for the development of new thermoregulatory drugs. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

19 pages, 1297 KiB  
Review
Jelleine, a Family of Peptides Isolated from the Royal Jelly of the Honey Bees (Apis mellifera), as a Promising Prototype for New Medicines: A Narrative Review
by William Gustavo Lima, Julio Cesar Moreira Brito, Rodrigo Moreira Verly and Maria Elena de Lima
Toxins 2024, 16(1), 24; https://doi.org/10.3390/toxins16010024 - 2 Jan 2024
Cited by 4 | Viewed by 7902
Abstract
The jelleine family is a group of four peptides (jelleines I–IV) originally isolated from the royal jelly of honey bee (Apis mellifera), but later detected in some honey samples. These oligopeptides are composed of 8–9 amino acid residues, positively charged (+2 [...] Read more.
The jelleine family is a group of four peptides (jelleines I–IV) originally isolated from the royal jelly of honey bee (Apis mellifera), but later detected in some honey samples. These oligopeptides are composed of 8–9 amino acid residues, positively charged (+2 to +3 at pH 7.2), including 38–50% of hydrophobic residues and a carboxamide C-terminus. Jelleines, generated by processing of the C-terminal region of major royal jelly proteins 1 (MRJP-1), play an important biological role in royal jelly conservation as well as in protecting bee larvae from potential pathogens. Therefore, these molecules present numerous benefits for human health, including therapeutic purposes as shown in preclinical studies. In this review, we aimed to evaluate the biological effects of jelleines in addition to characterising their toxicities and stabilities. Jelleines I–III have promising antimicrobial activity and low toxicity (LD50 > 1000 mg/Kg). However, jelleine-IV has not shown relevant biological potential. Jelleine-I, but not the other analogues, also has antiparasitic, healing, and pro-coagulant activities in addition to indirectly modulating tumor cell growth and controlling the inflammatory process. Although it is sensitive to hydrolysis by proteases, the addition of halogens increases the chemical stability of these molecules. Thus, these results suggest that jelleines, especially jelleine-I, are a potential target for the development of new, effective and safe therapeutic molecules for clinical use. Full article
Show Figures

Figure 1

Back to TopTop