Journal Description
Toxics
Toxics
is an international, peer-reviewed, open access journal on all aspects of the toxic chemicals and materials, published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Embase, CAPlus / SciFinder, AGRIS, and other databases.
- Journal Rank: JCR - Q1 (Toxicology) / CiteScore - Q2 (Chemical Health and Safety)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.6 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.6 (2022);
5-Year Impact Factor:
4.8 (2022)
Latest Articles
Recent Advances in Black Phosphorous-Based Photocatalysts for Degradation of Emerging Contaminants
Toxics 2023, 11(12), 982; https://doi.org/10.3390/toxics11120982 - 03 Dec 2023
Abstract
The recalcitrant nature of emerging contaminants (ECs) in aquatic environments necessitates the development of effective strategies for their remediation, given the considerable impacts they pose on both human health and the delicate balance of the ecosystem. Semiconductor-based photocatalytic technology is recognized for its
[...] Read more.
The recalcitrant nature of emerging contaminants (ECs) in aquatic environments necessitates the development of effective strategies for their remediation, given the considerable impacts they pose on both human health and the delicate balance of the ecosystem. Semiconductor-based photocatalytic technology is recognized for its dual benefits in effectively addressing both ECs and energy-related challenges simultaneously. Among the plethora of photocatalysts, black phosphorus (BP) stands as a promising nonmetallic candidate, offering a host of advantages including its tunable direct band gap, broad-spectrum light absorption capabilities, and exceptional charge mobility. Nevertheless, pristine BP frequently underperforms, primarily due to issues related to its limited ambient stability and the rapid recombination of photogenerated electron–hole pairs. To overcome these challenges, substantial research efforts have been devoted to the creation of BP-based photocatalysts in recent years. However, there is a noticeable absence of reviews regarding the advancement of BP-based materials for the degradation of ECs in aqueous solutions. Therefore, to fill this gap, a comprehensive review is undertaken. In this review, we first present an in-depth examination of the fabrication processes for bulk BP and BP nanosheets (BPNS). The review conducts a thorough analysis and comparison of the merits and limitations inherent in each method, thereby delineating the most auspicious avenues for future research. Then, in line with the pathways followed by photogenerated electron–hole pairs at the interface, BP-based photocatalysts are systematically categorized into heterojunctions (Type I, Type II, Z-scheme, and S-scheme) and hybrids, and their photocatalytic performances against various ECs and the corresponding degradation mechanisms are comprehensively summarized. Finally, this review presents personal insights into the prospective avenues for advancing the field of BP-based photocatalysts for ECs remediation.
Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation of Emerging Contaminants)
Open AccessArticle
MicroRNA miR-212-5p Regulates the MEK/ERK Signaling Pathway by Targeting A-Raf proto-oncogene serine/threonine-protein kinase (ARAF) to Regulate Cowshed PM2.5-Induced NR8383 Apoptosis
by
, , , , , , , , and
Toxics 2023, 11(12), 981; https://doi.org/10.3390/toxics11120981 - 03 Dec 2023
Abstract
Objective: To investigate the role of miR-212-5p-targeted ARAF during the apoptosis of rat alveolar macrophages induced by cowshed PM2.5. Methods: miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated
[...] Read more.
Objective: To investigate the role of miR-212-5p-targeted ARAF during the apoptosis of rat alveolar macrophages induced by cowshed PM2.5. Methods: miRNA and related target genes and pathways were predicted using the KEGG, TargetScan, and other prediction websites. NR8383 macrophages were treated with cowshed PM2.5 to establish an in vitro lung injury model in rats; meanwhile, for the assessment of cell viability, apoptosis, intracellular calcium ions, and mitochondrial membrane potential in NR8383 cells, RT-qPCR was used to detect the expression of miR-212-5p and the target gene ARAF. Result: The bioinformatic analyses showed that miR-212-5p and ARAF were involved in PM2.5-associated cellular damage. Exposure to different concentrations (0 μg/mL, 60 μg/mL, 180 μg/mL, 300 μg/mL) with different durations (0 h, 12 h, 24 h, 48 h) of cowshed PM2.5 resulted in apoptosis, increased intracellular calcium ions, and decreased mitochondrial membrane potential. The miR-212-5p mimic group showed an up-regulation of Bax and cleaved Caspase 3 expression but decreased Bcl2 expression compared to the NC group, and overexpression of ARAF up-regulated the expression of p-MEK1/2 and p-ERK1/2 and simultaneously reversed the above phenomena. Conclusion: miR-212-5p targets ARAF to affect the cowshed PM2.5-induced apoptosis through the MEK/ERK signaling pathway, providing a potential target for relevant farming industry and pathology studies.
Full article
(This article belongs to the Section Hormesis in Toxicology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Early-Life Exposure to the Mycotoxin Fumonisin B1 and Developmental Programming of the Ovary of the Offspring: The Possible Role of Autophagy in Fertility Recovery
by
, , , , and
Toxics 2023, 11(12), 980; https://doi.org/10.3390/toxics11120980 - 03 Dec 2023
Abstract
Mycotoxins are produced by more than one hundred fungi and produce secondary metabolites that contaminate various agricultural commodities, especially rice and corn. Their presence in the food chain is considered a serious problem worldwide. In recent years, a link between exposure to mycotoxins
[...] Read more.
Mycotoxins are produced by more than one hundred fungi and produce secondary metabolites that contaminate various agricultural commodities, especially rice and corn. Their presence in the food chain is considered a serious problem worldwide. In recent years, a link between exposure to mycotoxins and impaired fertility has been suggested. Consequently, it has become vital to investigate the interactive effects of these mycotoxins on ovarian function. In this study, we investigated the intergenerational effects of the mycotoxin fumonisin B1 (FB1) on ovarian structure and function. Virgin Wistar albino female rats were separated into control and FB1 treatment groups and examined from day 6 of pregnancy until delivery (20 and 50 mg/kg b.w./day). The obtained female rats of the first (F1) and second generations (F2) were euthanized at 4 weeks of age, and ovary samples were collected. We found that the ovary weight index increased with the high dose of the treatment (50 mg/kg b.w./day) among both F1 and F2, in a manner similar to that observed in polycystic ovary syndrome. As expected, FB1 at a high dose (50 mg/kg b.w.) reduced the number of primordial follicles in F1 and F2, leading to an accelerated age-related decline in reproductive capacity. Moreover, it reduced the fertility rate among the F1 female rats by affecting follicle growth and development, as the number of secondary and tertiary follicles decreased. Histopathological changes were evidenced by the altered structures of most of the growing follicle oocytes, as revealed by a thinning irregular zona pellucida and pyknosis in granulosa cells. These findings are concomitant with steroidogenesis- and folliculogenesis-related gene expression, as evidenced by the decrease in CYP19 activity and estrogen receptor beta (ESR2) gene expression. Additionally, GDF-9 mRNA levels were significantly decreased, and IGF-1 mRNA levels were significantly increased. However, the results from the ovaries of the F2 treatment groups were different and unexpected. While there was no significant variation in CYP19 activity compared to the control, the ESR2 significantly increased, leading to stereological and histopathological changes similar to those of the control, except for some altered follicles. The hallmark histological feature was the appearance of vacuolar structures within the oocyte and between granulosa cell layers. Interestingly, the autophagic marker LC3 was significantly increased in the F2 offspring, whereas this protein was significantly decreased in the F1 offspring. Therefore, we suggest that the promotion of autophagy in the ovaries of the F2 offspring may be considered a recovery mechanism from the effect of prenatal FB1 exposure. Thus, autophagy corrected the effect of FB1 during the early life of the F1 female rats, leading to F2 offspring with ovarian structure and function similar to those of the control. However, the offspring, treated female rats may experience early ovarian aging because their ovarian pool was affected.
Full article
(This article belongs to the Special Issue Environmental Exposures on Male and Female Fertility in the Maximum Reproductive Age)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Association of Combined Metals and PFAS with Cardiovascular Disease Risk
Toxics 2023, 11(12), 979; https://doi.org/10.3390/toxics11120979 - 01 Dec 2023
Abstract
This study sought to investigate the impact of exposure to metals and per- and polyfluoroalkyl substances (PFASs) on cardiovascular disease (CVD)-related risk. PFASs, including PFOA, PFOS, PFNA, and PFHxS, as well as metals such as lead (Pb), cadmium (Cd), and mercury (Hg), were
[...] Read more.
This study sought to investigate the impact of exposure to metals and per- and polyfluoroalkyl substances (PFASs) on cardiovascular disease (CVD)-related risk. PFASs, including PFOA, PFOS, PFNA, and PFHxS, as well as metals such as lead (Pb), cadmium (Cd), and mercury (Hg), were analyzed to elucidate their combined effects on CVD risk. Methods: Utilizing data from the National Health and Nutrition Examination Survey (NHANES) spanning from 2007 to 2014, this investigation explored the effects of PFASs and metals on CVD risk. A spectrum of individual CVD markers, encompassing systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, and triglycerides, was examined. Additionally, comprehensive CVD risk indices were evaluated, namely the Overall Cardiovascular Biomarkers Index (OCBI), including the Framingham Risk Score and an Overall Cardiovascular Index. Linear regression analysis was employed to probe the relationships between these variables. Furthermore, to assess dose–response relationships between exposure mixtures and CVD while mitigating the influence of multicollinearity and potential interaction effects, Bayesian Kernel Machine Regression (BKMR) was employed. Results: Our findings indicated that exposure to PFAS and metals in combination increased CVD risk, with combinations occurring with lead bringing forth the largest impact among many CVD-related markers. Conclusions: This study finds that combined exposure to metals and PFASs significantly elevates the likelihood of CVD risk. These results highlight the importance of understanding the complex interplay between multipollutant exposures and their potential implications for cardiovascular health.
Full article
(This article belongs to the Section Metals and Radioactive Substances)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog
Toxics 2023, 11(12), 978; https://doi.org/10.3390/toxics11120978 - 01 Dec 2023
Abstract
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin
[...] Read more.
Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.
Full article
(This article belongs to the Special Issue Environmental Arsenic Exposure, Toxicity Mechanism and Its Contribution to Human Diseases)
►▼
Show Figures

Figure 1
Open AccessCommunication
Rhizospheric Precipitation of Manganese by Phosphate: A Novel Strategy to Enhance Mn Tolerance in the Hyperaccumulator Phytolacca americana
by
and
Toxics 2023, 11(12), 977; https://doi.org/10.3390/toxics11120977 - 01 Dec 2023
Abstract
Manganese (Mn) exclusion in the Mn hyperaccumulator pokeweed (Phytolacca americana L.) was investigated. Hydroponic experiments were carried out to observe the responses of pokeweeds continually exposed to high levels of Mn. In this study, crystals were observed to appear firstly on the
[...] Read more.
Manganese (Mn) exclusion in the Mn hyperaccumulator pokeweed (Phytolacca americana L.) was investigated. Hydroponic experiments were carried out to observe the responses of pokeweeds continually exposed to high levels of Mn. In this study, crystals were observed to appear firstly on the root hair, and soon after, more crystals appeared on the root surface, and crystals of Mn phosphate were observed to appear on the root surface in a time sequence negatively correlated with the number of leaves treated with 5 mM Mn. Crystals were identified via phase analysis of X-ray diffraction and element analysis, and these white insoluble crystals were identified using XRD to be Mn phosphate, with the molecular formula (Mn,Fe)3(PO4)2·4H2O. The nutrient solution pH increased from 4.5 to about 5.6 before the crystals appeared. Mn phosphate crystals appeared in all solutions except those without phosphate and emerged earlier in the solutions containing no Fe. Compared with control group, pokeweed accumulated much more Mn in the leaves when treated without phosphate or Fe. The present study suggests that pokeweed can exclude Mn by means of rhizosphere precipitation by phosphate to form Mn phosphate crystals that accumulate on the root surface. Although the detailed mechanism requires further investigation, this study provides the first direct evidence of a novel strategy to inhibit Mn uptake in the roots of a hyperaccumulator in a P-enriched environment.
Full article
(This article belongs to the Special Issue Toxicity Characterization, Detection and Remediation of Contaminants in Soils and Groundwater 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Oxidative Stress and Cytotoxicity Induced by Co-Formulants of Glyphosate-Based Herbicides in Human Mononuclear White Blood Cells
Toxics 2023, 11(12), 976; https://doi.org/10.3390/toxics11120976 - 01 Dec 2023
Abstract
The use of genetically modified, glyphosate-resistant crops has led to the widespread application of glyphosate-based herbicides (GBHs), making them one of the most widely used herbicide formulations on the market. To enhance the efficacy of the active ingredient, GBHs used in practice often
[...] Read more.
The use of genetically modified, glyphosate-resistant crops has led to the widespread application of glyphosate-based herbicides (GBHs), making them one of the most widely used herbicide formulations on the market. To enhance the efficacy of the active ingredient, GBHs used in practice often contain other ingredients marked as inert “adjuvants” or “co-formulants”, the toxic properties of which are poorly understood. The objective of this study was to compare the cytotoxic effects of pure glyphosate, three GBHs (Roundup Mega, Fozat 480 and Glyfos) and two co-formulants commonly used in GBHs as assessed via CCK-8 assay, and the extent of their potential oxidative damage as assessed via superoxide dismutase (SOD) assay, in order to reveal the role of adjuvants in the toxicity of the formulations. Our results showed that glyphosate alone did not significantly affect cell viability. In contrast, GBHs and adjuvants induced a pronounced cytotoxic effect from a concentration of 100 μM. SOD activity of cells treated with GBHs or adjuvants was significantly lower compared to cells treated with glyphosate alone. This suggests that the adjuvants in GBHs are responsible for the cytotoxic effects of the formulations through the induction of oxidative stress.
Full article
(This article belongs to the Special Issue Hazardous Effects of Pesticides on Human Health)
►▼
Show Figures

Figure 1
Open AccessReview
The Measurement of Atmospheric Black Carbon: A Review
Toxics 2023, 11(12), 975; https://doi.org/10.3390/toxics11120975 - 01 Dec 2023
Abstract
Black Carbon (BC), the second-largest contributor to global warming, has detrimental effects on human health and the environment. However, the accurate quantification of BC poses a significant challenge, impeding the comprehensive assessment of its impacts. Therefore, this paper aims to critically review three
[...] Read more.
Black Carbon (BC), the second-largest contributor to global warming, has detrimental effects on human health and the environment. However, the accurate quantification of BC poses a significant challenge, impeding the comprehensive assessment of its impacts. Therefore, this paper aims to critically review three quantitative methods for measuring BC: Thermal Optical Analysis (TOA), the Optical Method, and Laser-Induced Incandescence (LII). The determination principles, available commercial instruments, sources of deviation, and correction approaches associated with these techniques are systematically discussed. By synthesizing and comparing the quantitative results reported in previous studies, this paper aims to elucidate the underlying relationships and fundamental disparities among Elemental Carbon (EC), Equivalent Black Carbon (eBC), and Refractory Black Carbon (rBC). Finally, based on the current advancements in BC quantification, recommendations are proposed to guide future research directions.
Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Aerosol Particles)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of a Polymer-Based Nanoparticle with Formoterol Drug as Nanocarrier System In Vitro and in an Experimental Asthmatic Model
by
, , , , , , , , , , and
Toxics 2023, 11(12), 974; https://doi.org/10.3390/toxics11120974 - 30 Nov 2023
Abstract
The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a
[...] Read more.
The implementation of nanotechnology in pulmonary delivery systems might result in better and more specific therapy. Therefore, a nano-sized drug carrier should be toxicologically inert and not induce adverse effects. We aimed to investigate the responses of a polymer nano drug carrier, a lysine poly-hydroxyethyl methacrylate nanoparticle (NP) [Lys-p(HEMA)], loaded with formoterol, both in vitro and in vivo in an ovalbumin (OVA) asthma model. The successfully synthesized nanodrug formulation showed an expectedly steady in vitro release profile. There was no sign of in vitro toxicity, and the 16HBE and THP-1 cell lines remained vital after exposure to the nanocarrier, both loaded and unloaded. In an experimental asthma model (Balb/c mice) of ovalbumin sensitization and challenge, the nanocarrier loaded and unloaded with formoterol was tested in a preventive strategy and compared to treatment with the drug in a normal formulation. The airway hyperresponsiveness (AHR) and pulmonary inflammation in the bronchoalveolar lavage (BAL), both cellular and biochemical, were assessed. The application of formoterol as a regular drug and the unloaded and formoterol-loaded NP in OVA-sensitized mice followed by a saline challenge was not different from the control group. Yet, both the NP formulation and the normal drug application led to a more deteriorated lung function and increased lung inflammation in the OVA-sensitized and -challenged mice, showing that the use of the p(HEMA) nanocarrier loaded with formoterol needs more extensive testing before it can be applied in clinical settings.
Full article
(This article belongs to the Section Drugs Toxicity)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of an Antioxidant Response Element–Nuclear Factor Erythroid 2 Luciferase Assay for Assessing the Skin Sensitization Potential of Agrochemicals
by
, , , , , and
Toxics 2023, 11(12), 973; https://doi.org/10.3390/toxics11120973 - 30 Nov 2023
Abstract
The skin sensitization potential of agrochemicals can be assessed using laboratory methods such as the keratinocyte activation assay so that their use in regulatory toxicology might replace experimental animal testing. Here, we evaluated the skin sensitization potential of 11 agrochemicals by using an
[...] Read more.
The skin sensitization potential of agrochemicals can be assessed using laboratory methods such as the keratinocyte activation assay so that their use in regulatory toxicology might replace experimental animal testing. Here, we evaluated the skin sensitization potential of 11 agrochemicals by using an antioxidant response element–nuclear factor erythroid 2 luciferase assay in KeratinoSens and LuSens cells and applying a skin sensitization adverse outcome pathway (AOP). The KeratinoSens and LuSens assays consistently evaluated the skin sensitization potential of 10/11 agrochemicals with reference to animal testing databases. Benomyl, pretilachlor, fluazinam, terbufos, butachlor, and carbosulfan were correctly detected as sensitizers, and glufosinate ammonium, oxiadiazon, tebuconazole, and etofenprox were correctly detected as non-sensitizers. For diazinon, the skin sensitizing potential was positive in the KeratinoSens assay but not in the LuSens assay. These results suggest that the evaluation of in vitro skin sensitization using the AOP mechanism can be applied to assess active agrochemicals.
Full article
(This article belongs to the Special Issue Hazardous Effects of Pesticides on Human Health)
►▼
Show Figures

Figure 1
Open AccessArticle
Microplastic Quantification in Aquatic Birds: Biomonitoring the Environmental Health of the Panjkora River Freshwater Ecosystem in Pakistan
by
, , , , , , , , , , , and
Toxics 2023, 11(12), 972; https://doi.org/10.3390/toxics11120972 - 30 Nov 2023
Abstract
Microplastic pollution has become a global concern, with potential negative impacts on various ecosystems and wildlife species. Among these species, ducks (Anas platyrhynchos) are particularly vulnerable due to their feeding habits and proximity to aquatic environments contaminated with microplastics. The current
[...] Read more.
Microplastic pollution has become a global concern, with potential negative impacts on various ecosystems and wildlife species. Among these species, ducks (Anas platyrhynchos) are particularly vulnerable due to their feeding habits and proximity to aquatic environments contaminated with microplastics. The current study was designed to monitor microplastic (MP) pollutants in the freshwater ecosystem of the Panjkora River, Lower Dir, Pakistan. A total of twenty (20) duck samples were brought up for four months and 13 days on the banks of the river, with no food intake outside the river. When they reached an average weight of 2.41 ± 0.53 kg, all samples were sacrificed, dissected, and transported in an ice box to the laboratory for further analysis. After sample preparation, such as digestion with 10% potassium hydroxide (KOH), density separation, filtration, and identification, the MP content was counted. A total of 2033 MP particles were recovered from 20 ducks with a mean value of 44.6 ± 15.8 MPs/crop and 57.05 ± 18.7 MPs/gizzard. MPs detected in surface water were 31.2 ± 15.5 MPs/L. The major shape types of MPs recovered were fragments in crop (67%) and gizzard (58%) samples and fibers in surface water (56%). Other types of particles recovered were fibers, sheets, and foams. The majority of these detected MP particles were in the size range of 300–500 µm (63%) in crops, and 50–150 µm (55%) in gizzards, while in water samples the most detected particles were in the range of 150–300 µm (61%). Chemical characterization by FTIR found six types of polymers. Low-density polyethylene (LDPE) had the greatest polymer detection rate (39.2%), followed by polyvinyl chloride (PVC) (28.3%), high-density polyethylene (HDPE) (22.7%), polystyrene (6.6%), co-polymerized polypropylene (2.5%), and polypropylene homopolymer (0.7%). This study investigated the presence of microplastics in the crops and gizzards of ducks, as well as in river surface water. The results revealed the significant and pervasive occurrence of microplastics in both the avian digestive systems and the surrounding water environment. These findings highlight the potential threat of microplastic pollution to wildlife and ecosystems, emphasizing the need for further research and effective mitigation strategies to address this pressing environmental concern.
Full article
(This article belongs to the Special Issue Environmental Exposure to Microplastics: Effects on Animals and Human Health)
►▼
Show Figures

Figure 1
Open AccessArticle
The Lethal and Sublethal Effects of Lambda-Cyhalothrin and Emamectin Benzoate on the Soybean Pest Riptortus pedestris (Fabricius)
Toxics 2023, 11(12), 971; https://doi.org/10.3390/toxics11120971 - 30 Nov 2023
Abstract
Riptortus pedestris (Fabricius, 1775) (Hemiptera: Alydidae) is a major soybean pest in East Asia that can cause soybean staygreen syndrome. To date, no insecticides have been registered for the control of R. pedestris in China, and these insects are primarily controlled in the
[...] Read more.
Riptortus pedestris (Fabricius, 1775) (Hemiptera: Alydidae) is a major soybean pest in East Asia that can cause soybean staygreen syndrome. To date, no insecticides have been registered for the control of R. pedestris in China, and these insects are primarily controlled in the field through the application of broad-spectrum insecticides including lambda-cyhalothrin (LCT) and emamectin benzoate (EMB). Here, the lethal and sublethal effects of LCT and EMB on R. pedestris were comprehensively evaluated. LCT and EMB were both found to exhibit high levels of toxicity and concentration-dependent repellent effects for R. pedestris. The exposure of third instar nymphs from the F0 generation to LC30 concentrations of LCT and EMB resulted in a significant increase in the duration of nymph development and adult pre-oviposition period (APOP), together with reductions in fifth instar nymph and adult body weight, longevity, oviposition days, fecundity, vitellarium length, lateral oviduct diameter, and vitellogenin (Vg) gene expression as compared to control treatment. Strikingly, these suppressive effects were transmitted to the F1 generation, which similarly experienced the prolongation of preadult development and the preoviposition period (TPOP). Relative to control-treated populations, the F1 generation for these insecticide-treated groups also exhibited significant decreases in population parameter values. Overall, these data offer new insight into the impact that LCT and EMB treatment can have on R. pedestris, providing a valuable foundation for the application of these pesticides in the context of integrated pest management strategies aimed at soybean crop preservation.
Full article
(This article belongs to the Special Issue Sub-Lethal Effects of Emerging Contaminants in Terrestrial and Aquatic Invertebrates)
►▼
Show Figures

Figure 1
Open AccessArticle
Subchronic Arsenic Exposure Induces Behavioral Impairments and Hippocampal Damage in Rats
by
, , , , , , , and
Toxics 2023, 11(12), 970; https://doi.org/10.3390/toxics11120970 - 30 Nov 2023
Abstract
This study investigated the effects of subchronic arsenic exposure on behavior, neurological function, and hippocampal damage in rats. Thirty-two male Wistar rats were divided into four groups and exposed to different concentrations of arsenic in their drinking water for 12 weeks, while weekly
[...] Read more.
This study investigated the effects of subchronic arsenic exposure on behavior, neurological function, and hippocampal damage in rats. Thirty-two male Wistar rats were divided into four groups and exposed to different concentrations of arsenic in their drinking water for 12 weeks, while weekly water intake and body weight were recorded. Various neurobehavioral tests were conducted, evaluating overall activity levels, exploratory behavior, short-term memory, spatial learning and memory, anxiety-like behavior, and depressive-like states. Arsenic levels in urine, serum, and brain tissue were measured, and histopathological analysis assessed hippocampal damage using hematoxylin and eosin staining. The results demonstrated that arsenic exposure did not significantly affect overall activity or exploratory behavior. However, it impaired short-term memory and spatial learning and memory functions. Arsenic-exposed rats exhibited increased anxiety-like behavior and a depressive-like state. Arsenic levels increased dose-dependently in urine, serum, and brain tissue. The histopathological examinations revealed significant hippocampal damage, including neuronal shrinkage, cell proliferation, irregular structure, disordered arrangement, and vacuolation. These findings emphasize the importance of understanding the impact of arsenic exposure on behavior and brain health, highlighting its potential neurological consequences.
Full article
(This article belongs to the Special Issue Environmental Arsenic Exposure, Toxicity Mechanism and Its Contribution to Human Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
miR-153-3p via PIK3R1 Is Involved in Cigarette Smoke-Induced Neurotoxicity in the Brain
Toxics 2023, 11(12), 969; https://doi.org/10.3390/toxics11120969 - 30 Nov 2023
Abstract
Cigarettes contain various chemicals that cause damage to nerve cells. Exposure to cigarette smoke (CS) causes insulin resistance (IR) in nerve cells. However, the mechanisms for a disorder in the cigarette-induced insulin signaling pathway and in neurotoxicity remain unclear. Therefore, we evaluated, by
[...] Read more.
Cigarettes contain various chemicals that cause damage to nerve cells. Exposure to cigarette smoke (CS) causes insulin resistance (IR) in nerve cells. However, the mechanisms for a disorder in the cigarette-induced insulin signaling pathway and in neurotoxicity remain unclear. Therefore, we evaluated, by a series of pathology analyses and behavioral tests, the neurotoxic effects of chronic exposure to CS on C57BL/6 mice. Mice exposed to CS with more than 200 mg/m3 total particulate matter (TPM) exhibited memory deficits and cognitive impairment. Pathological staining of paraffin sections of mouse brain tissue revealed that CS-exposed mice had, in the brain, neuronal damage characterized by thinner pyramidal and granular cell layers and fewer neurons. Further, the exposure of SH-SY5Y cells to cigarette smoke extract (CSE) resulted in diminished insulin sensitivity and reduced glucose uptake in a dose-dependent fashion. The PI3K/GSK3 insulin signaling pathway is particularly relevant to neurotoxicity. microRNAs are involved in the PI3K/GSK3β/p-Tau pathway, and we found that cigarette exposure activates miR-153-3p, decreases PI3K regulatory subunits PIK3R1, and induces Tau hyperphosphorylation. Exposure to an miR-153 inhibitor or to a PI3K inhibitor alleviated the reduced insulin sensitivity caused by CS. Therefore, our results indicate that miR-153-3p, via PIK3R1, causes insulin resistance in the brain, and is involved in CS-induced neurotoxicity.
Full article
(This article belongs to the Section Neurotoxicity)
►▼
Show Figures

Figure 1
Open AccessArticle
Persistent Halogenated Organic Pollutants in Deep-Water-Deposited Particulates from South China Sea
by
, , , , , , , and
Toxics 2023, 11(12), 968; https://doi.org/10.3390/toxics11120968 - 29 Nov 2023
Abstract
POP data are limited in the marine environment; thus, this study aimed to investigate background persistent organic pollutant (POP) levels in oceanic deep-water-deposited particulates in the South China Sea (SCS). Six POPs, including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated
[...] Read more.
POP data are limited in the marine environment; thus, this study aimed to investigate background persistent organic pollutant (POP) levels in oceanic deep-water-deposited particulates in the South China Sea (SCS). Six POPs, including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DL-PCBs), polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs), polychlorinated diphenyl ethers (PCDEs), and polybrominated biphenyls (PBBs), were investigated in eight pooled samples from the SCS from 20 September 2013 to 23 March 2014 and 15 April 2014 to 24 October 2014 at depths of 2000 m and 3500 m. PBDEs were the most predominant compounds, with the highest mean Σ14PBDE of 125 ± 114 ng/g dry weight (d.w.), followed by Σ17PCDD/F, Σ12PBDD/F, and Σ12DL-PCB (275 ± 1930, 253 ± 216, and 116 ± 166 pg/g d.w., respectively). Most PBDD/F, PBB, and PCDE congeners were below the detection limits. PCDDs had the highest toxic equivalency (TEQ), followed by PBDDs and DL-PCBs. Among the six POPs, PBDEs were the major components of the marine-deposited particles, regarding both concentrations and mass fluxes. Compared to 3500 m, PBDE levels were higher at a depth of 2000 m. PBDE mass fluxes were 20.9 and 14.2 ng/m2/day or 68.2 and 75.9 ng/m2/year at deep-water 2000 and 3500 m, respectively. This study first investigated POP levels in oceanic deep-water-deposited particles from existing global data.
Full article
(This article belongs to the Special Issue Toxicity and Ecological Risks of Emerging Contaminants in the Marine Environment)
►▼
Show Figures

Figure 1
Open AccessReview
Revisiting Genetic Influence on Mercury Exposure and Intoxication in Humans: A Scoping Review
by
, , , , , , , , and
Toxics 2023, 11(12), 967; https://doi.org/10.3390/toxics11120967 - 29 Nov 2023
Abstract
Human intoxication to mercury is a worldwide health problem. In addition to the type and length of exposure, the genetic background plays an important role in mercury poisoning. However, reviews on the genetic influence in mercury toxicity are scarce and not systematic. Therefore,
[...] Read more.
Human intoxication to mercury is a worldwide health problem. In addition to the type and length of exposure, the genetic background plays an important role in mercury poisoning. However, reviews on the genetic influence in mercury toxicity are scarce and not systematic. Therefore, this review aimed to systematically overview the most recent evidence on the genetic influence (using single nucleotide polymorphisms, SNPs) on human mercury poisoning. Three different databases (PubMed/Medline, Web of Science and Scopus) were searched, and 380 studies were found that were published from 2015 to 2022. After applying inclusion/exclusion criteria, 29 studies were selected and data on characteristics (year, country, profile of participants) and results (mercury biomarkers and quantitation, SNPs, main findings) were extracted and analyzed. The largest number of studies was performed in Brazil, mainly involving traditional populations of the Tapajós River basin. Most studies evaluated the influence of the SNPs related to genes of the glutathione system (GST, GPx, etc.), the ATP-binding cassette transporters and the metallothionein proteins. The recent findings regarding other SNPs, such as those of apolipoprotein E and brain-derived neurotrophic factor genes, are also highlighted. The importance of the exposure level is discussed considering the possible biphasic behavior of the genetic modulation phenomena that could explain some SNP associations. Overall, recommendations are provided for future studies based on the analysis obtained in this scoping review.
Full article
(This article belongs to the Special Issue Environmental Pollutants, Neurocognitive Disorders and Other Health Outcomes in Autochthones Populations Worldwide)
►▼
Show Figures

Figure 1
Open AccessReview
Occurrence, Bioaccumulation, Metabolism and Ecotoxicity of Fluoroquinolones in the Aquatic Environment: A Review
by
, , , , , , , and
Toxics 2023, 11(12), 966; https://doi.org/10.3390/toxics11120966 - 29 Nov 2023
Abstract
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of “pseudo-persistence”. This article provides a comprehensive
[...] Read more.
In recent years, there has been growing concern about antibiotic contamination in water bodies, particularly the widespread presence of fluoroquinolones (FQs), which pose a serious threat to ecosystems due to their extensive use and the phenomenon of “pseudo-persistence”. This article provides a comprehensive review of the literature on FQs in water bodies, summarizing and analyzing contamination levels of FQs in global surface water over the past three years, as well as the bioaccumulation and metabolism patterns of FQs in aquatic organisms, their ecological toxicity, and the influencing factors. The results show that FQs contamination is widespread in surface water across the surveyed 32 countries, with ciprofloxacin and norfloxacin being the most heavy contaminants. Furthermore, contamination levels are generally higher in developing and developed countries. It has been observed that compound types, species, and environmental factors influence the bioaccumulation, metabolism, and toxicity of FQs in aquatic organisms. FQs tend to accumulate more in organisms with higher lipid content, and toxicity experiments have shown that FQs exhibit the highest toxicity to bacteria and the weakest toxicity to mollusk. This article summarizes and analyzes the current research status and shortcomings of FQs, providing guidance and theoretical support for future research directions.
Full article
(This article belongs to the Special Issue Innovative Strategies to Decompose Pollutants)
►▼
Show Figures

Figure 1
Open AccessArticle
The Association of Perfluoroalkyl Substance Exposure and a Serum Liver Function Marker in Korean Adults
by
and
Toxics 2023, 11(12), 965; https://doi.org/10.3390/toxics11120965 - 28 Nov 2023
Abstract
Perfluoroalkyl substances (PFAS), widely used throughout industry and daily life, are currently one of the environmental pollutants garnering the most attention worldwide. Recently, environmental pollutants have had a high profile as one of the main causes of chronic liver disease, such as non-alcoholic
[...] Read more.
Perfluoroalkyl substances (PFAS), widely used throughout industry and daily life, are currently one of the environmental pollutants garnering the most attention worldwide. Recently, environmental pollutants have had a high profile as one of the main causes of chronic liver disease, such as non-alcoholic fatty liver disease. Research on PFAS is actively underway. Although Korea has a remarkably high prevalence of chronic liver disease, and it continues to increase, only a few studies have revealed the relationship between PFAS and liver disease. In addition, regulations on PFAS in Korea are delayed compared to developed countries, such as Europe and the United States, and public interest is insufficient compared to others. Therefore, we would like to investigate the exposure of Koreans to PFAS in the blood and examine the relationship between these substances and markers of liver function (AST, ALT, and GGT). This study was based on the results of the Korean National Environmental Health Survey (KoNEHS) 2015–2017 (Cycle 3), and a total of 2961 subjects were selected. The concentration of PFAS in the blood of Korean adults was measured to be significantly higher based on the geometric mean compared to the results of recently investigated American adults based on the National Health and Nutrition Examination Survey (NHANES, 2017–2018). A multivariable linear regression analysis adjusted for age, sex, body mass index (BMI), smoking status, alcohol intake, and regular exercise was performed to examine changes in three liver function markers as the serum PFAS concentration increased. We found that some of the five PFAS (PFOA, PFOS, PFHxS, PFNA, and PFDeA) were significantly associated with increased liver enzymes. It is necessary to recognize the threat of PFAS to the human body and to discuss regulations and alternatives in earnest. Continuous follow-up studies are required through a well-designed cohort.
Full article
(This article belongs to the Special Issue Occurrence, Fate, Removal, and Effects of Per- and Polyfluoroalkyl Substances (PFASs))
►▼
Show Figures

Figure 1
Open AccessArticle
Asthma and Other Respiratory Diseases of Children in Relation to Personal Behavior, Household, Parental and Environmental Factors in West China
Toxics 2023, 11(12), 964; https://doi.org/10.3390/toxics11120964 - 28 Nov 2023
Abstract
Asthma and other respiratory diseases, which are of great concern in public health, are paid less attention in areas that are less economically developed. This research aimed to study the prevalence of critical respiratory diseases of children living in West China and figure
[...] Read more.
Asthma and other respiratory diseases, which are of great concern in public health, are paid less attention in areas that are less economically developed. This research aimed to study the prevalence of critical respiratory diseases of children living in West China and figure out the potential influencing factors. A total of 575 children under the age of 14 were recruited from Xinjiang, China, to participate in the study in 2022. Information on activity patterns, socioeconomic and parental factors, and household and surrounding environment situations was obtained using a questionnaire survey. Logistic regression models were applied to estimate the odds ratios of respiratory disease prevalence in relation to behavior patterns, household, parental and environmental factors, respectively. The prevalence of ever doctor-diagnosed asthma, doctor-diagnosed bronchitis and current bronchitis were 4.7%, 19.0% and 14.4%, respectively. The prevalence of doctor-diagnosed pneumonia was 8.2%, which was two times higher in urban than rural areas. Longer annual heating duration was significantly associated with higher risks in children’s asthma and bronchitis, with an odds ratio (OR) and 95% confidence interval (95% CI) of 3.363 (95% CI: 1.215–9.298) and 1.267 (95% CI: 1.002–1.601), respectively. Opening the window longer in autumn would lead to higher risks of bronchitis, with ORs of 1.165 and 1.133, respectively, for doctor-diagnosed bronchitis and current bronchitis. Residential air pollution and having a residence close to waste incineration plant or garbage station were, respectively, significantly associated with higher risks of doctor-diagnosed bronchitis and asthma. Parental disease history was associated with a higher prevalence of children’s asthma and respiratory diseases, whereas breastfeeding and doing physical exercise were, respectively, significantly associated with a lower risk of asthma. A high prevalence of respiratory diseases in children in West China may be partly attributed to longer annual heating time, opening windows longer in autumn, surrounding environmental pollution, as well as parental disease history, whereas promoting physical activity and breastfeeding could be an effective measure to reduce the risk of childhood asthma in West China.
Full article
(This article belongs to the Special Issue Environmental Contaminants Exposure and Children Health Risk Assessment)
Open AccessFeature PaperArticle
Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice
Toxics 2023, 11(12), 963; https://doi.org/10.3390/toxics11120963 - 28 Nov 2023
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to
[...] Read more.
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.
Full article
(This article belongs to the Special Issue Per- and Polyfluoroalkyl Substances in the Environment: Sources, Fate and Risk Assessments)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Toxics Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
- 10th Anniversary of Toxics
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
IJERPH, Microplastics, Sustainability, Toxics, Water
Microplastics Pollution
Topic Editors: Grigorios L. Kyriakopoulos, Vassilis J. Inglezakis, Antonis A. Zorpas, María Rocío Rodríguez BarrosoDeadline: 31 December 2023
Topic in
Water, Toxics, Land, Environments
Fate and Transport of Artificial Radionuclides in Soil-Water Environment
Topic Editors: Alexei Konoplev, Mikhail KomissarovDeadline: 30 April 2024
Topic in
Materials, Minerals, Processes, Sustainability, Toxics, Water
Removal of Hazardous Substances from Water Resources
Topic Editors: Gujie Qian, Yan Zhou, Weifeng ChenDeadline: 20 May 2024
Topic in
Diversity, Environments, JMSE, Toxics, Water
Coastal Macro-, Meso-, and Microplastic Pollution: Effects on the Health of Humans and Ecosystems
Topic Editors: Alba Ardura Gutiérrez, Sara Fernandez FernandezDeadline: 30 May 2024

Conferences
Special Issues
Special Issue in
Toxics
PFAS Toxicology and Metabolism
Guest Editors: Denise MacMillan, Barbara Wetmore, William S. Baldwin, Subham DasguptaDeadline: 15 December 2023
Special Issue in
Toxics
Toxic Effects of Persistent Endocrine Disrupters in Coastal Ecosystems
Guest Editors: Patricia Cardoso, Catarina Cruzeiro, Susana Galante-OliveiraDeadline: 29 December 2023
Special Issue in
Toxics
Toxic Mixtures Evaluation and Management
Guest Editor: M. Moiz MumtazDeadline: 31 December 2023
Special Issue in
Toxics
Toxicity Assessment of Environmental Pollutants towards Aquatic Organisms
Guest Editors: Laetitia Minguez, Fanny LouisDeadline: 20 January 2024
Topical Collections
Topical Collection in
Toxics
Environmental and Health Risks of Nanotechnology
Collection Editors: Laura Braydich-Stolle, Saber M. Hussain
Topical Collection in
Toxics
Xenobiotics in Developmental Neurotoxicity
Collection Editor: David R. Wallace
Topical Collection in
Toxics
Exposure and Effects of Environmental Pollution on Vulnerable Populations
Collection Editors: Matteo Vitali, Carmela Protano, Arianna Antonucci