Special Issue "Assessment and Development of Change of Direction Speed and Agility"

A special issue of Sports (ISSN 2075-4663).

Deadline for manuscript submissions: 30 June 2019

Special Issue Editor

Guest Editor
Dr. Paul Jones

School of Health Sciences, University of Salford Frederick Rd, Salford M6 6PU, Greater Manchester, England,
Website | E-Mail
Interests: Assessment of muscle strength qualities for performance and injury risk assessment; Assessment and development of speed and agility; Biomechanics of sprinting and change of direction for performance and injury risk

Special Issue Information

Dear Colleagues,

Agility (the ability to change direction, velocity or movement in response to sports-specific stimuli) is an important quality to develop for athletes involved in field and court based sports. Agility is underpinned by an individual’s perceptual–cognitive abilities and change of direction (COD) speed, with the latter dependent on muscle strength qualities and technique. Until the last decade, the ability to assess COD speed and agility has been poorly understood. Furthermore, recent research is providing a better understanding of the physical and biomechanical requirements of COD. The aim of this Special Issue is to expand the growing body of research regarding the assessment and development of COD speed and agility, and welcomes research articles pertaining to; the assessment of both qualities, underpinning biomechanics of COD (or related phases), the role of muscle strength qualities in COD and various interventions to enhance both agility and COD speed.

Dr. Paul Jones
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sports is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 350 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Cutting
  • Pivoting
  • Deceleration
  • Maneuverability
  • Biomechanics
  • Technique
  • Muscle Strength Qualities
  • Perceptual-cognitive
  • Change of Direction Deficit
  • Injury Risk

Published Papers (4 papers)

View options order results:
result details:
Displaying articles 1-4
Export citation of selected articles as:

Research

Open AccessFeature PaperArticle
Physical Qualities Pertaining to Shorter and Longer Change-of-Direction Speed Test Performance in Men and Women
Received: 18 January 2019 / Revised: 5 February 2019 / Accepted: 15 February 2019 / Published: 16 February 2019
PDF Full-text (621 KB) | HTML Full-text | XML Full-text
Abstract
This study investigated relationships between shorter (505, change-of-direction (COD) deficit as a derived physical quality) and longer (Illinois agility test; IAT) COD tests with linear speed, lower-body power (multidirectional jumping), and strength in recreationally-trained individuals. Twenty-one males and 22 females (similar to collegiate [...] Read more.
This study investigated relationships between shorter (505, change-of-direction (COD) deficit as a derived physical quality) and longer (Illinois agility test; IAT) COD tests with linear speed, lower-body power (multidirectional jumping), and strength in recreationally-trained individuals. Twenty-one males and 22 females (similar to collegiate club-sport and tactical athletes) were assessed in: 505 and COD deficit from each leg; IAT; 20 m sprint; vertical jump (VJ height, peak anaerobic power measured in watts (PAPw), power-to-body mass ratio); standing broad jump; lateral jump (LJ) from each leg; and absolute and relative isometric midthigh pull (IMTP) strength. Partial correlations calculated sex-determined relationships between the COD and performance tests, with regression equations calculated (p < 0.05). The 505 and IAT correlated with all tests except PAPw and absolute IMTP (r = ±0.43–0.71). COD deficit correlated with the LJ (r = −0.34–0.60). Left- and right-leg 505 was predicted by sex, 20 m sprint, and left-leg LJ (70–77% explained variance). Right-leg COD deficit was predicted by sex and left-leg LJ (27% explained variance). IAT was predicted by sex, 20 m sprint, right-leg LJ, and relative IMTP (84% explained variance). For individuals with limited training time, improving linear speed, and relative lower-body power and strength, could enhance shorter and longer COD performance. Full article
(This article belongs to the Special Issue Assessment and Development of Change of Direction Speed and Agility)
Figures

Figure 1

Open AccessArticle
Change of Direction Deficit in National Team Rugby Union Players: Is There an Influence of Playing Position?
Received: 14 November 2018 / Revised: 12 December 2018 / Accepted: 17 December 2018 / Published: 21 December 2018
Cited by 1 | PDF Full-text (1465 KB) | HTML Full-text | XML Full-text
Abstract
The aim of this study was to investigate the change of direction (COD) ability and deficits of elite rugby union players, discriminating between position (backs and forwards), and between “faster and slower players”, in multiple COD tasks. Twenty-four male rugby union players from [...] Read more.
The aim of this study was to investigate the change of direction (COD) ability and deficits of elite rugby union players, discriminating between position (backs and forwards), and between “faster and slower players”, in multiple COD tasks. Twenty-four male rugby union players from the Brazilian senior National team completed the following assessments: Squat and countermovement jumps; drop jump; standing long jump, horizontal triple jumps; 40-m linear sprint; Pro-agility, L-Drill, and Zig-zag COD tests; and squat 1-repetition maximum. The differences between backs and forwards and between faster and slower performers were examined using magnitude-based inferences. Backs were faster (in both linear and COD speed tests) and jumped higher than forwards. Moreover, they generated an inferior sprint momentum. No differences were found in COD deficit between playing positions. However, when dividing the sample by median split, faster players outperformed their slower counterparts in all power–speed variables and presented higher COD deficits. These results suggest that separating rugby players by playing position might not discriminate players with different COD skills and that the median split analysis is more sensitive to identifying these differences. Furthermore, the present data indicate that faster rugby players are less efficient at changing direction and tolerating higher approach velocities in COD maneuvers. Full article
(This article belongs to the Special Issue Assessment and Development of Change of Direction Speed and Agility)
Figures

Figure 1

Open AccessArticle
Comparison of Change of Direction Speed Performance and Asymmetries between Team-Sport Athletes: Application of Change of Direction Deficit
Received: 29 October 2018 / Revised: 27 November 2018 / Accepted: 10 December 2018 / Published: 12 December 2018
Cited by 1 | PDF Full-text (1361 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The purpose of this study was twofold: (1) to examine differences in change of direction (COD) performance and asymmetries between team-sports while considering the effects of sex and sport; (2) to evaluate the relationship between linear speed, COD completion time, and COD deficit. [...] Read more.
The purpose of this study was twofold: (1) to examine differences in change of direction (COD) performance and asymmetries between team-sports while considering the effects of sex and sport; (2) to evaluate the relationship between linear speed, COD completion time, and COD deficit. A total of 115 (56 males, 59 females) athletes active in cricket, soccer, netball, and basketball performed the 505 for both left and right limbs and a 10-m sprint test. All team-sports displayed directional dominance (i.e., faster turning performance/shorter COD deficits towards a direction) (p ≤ 0.001, g = −0.62 to −0.96, −11.0% to −28.4%) with, male cricketers tending to demonstrate the greatest COD deficit asymmetries between directions compared to other team-sports (28.4 ± 26.5%, g = 0.19–0.85), while female netballers displayed the lowest asymmetries (11.0 ± 10.1%, g = 0.14–0.86). Differences in sprint and COD performance were observed between sexes and sports, with males demonstrating faster 10-m sprint times, and 505 times compared to females of the same sport. Male soccer and male cricketers displayed shorter COD deficits compared to females of the same sport; however, female court athletes demonstrated shorter COD deficits compared to male court athletes. Large significant associations (ρ = 0.631–0.643, p < 0.001) between 505 time and COD deficit were revealed, while trivial, non-significant associations (ρ ≤ −0.094, p ≥ 0.320) between COD deficit and 10-m sprint times were observed. In conclusion, male and female team-sport athletes display significant asymmetries and directional dominance during a high approach velocity 180° turning task. Coaches and practitioners are advised to apply the COD deficit for a more isolated measure of COD ability (i.e., not biased towards athletes with superior acceleration and linear speed) and perform COD speed assessments from both directions to establish directional dominance and create a COD symmetry profile. Full article
(This article belongs to the Special Issue Assessment and Development of Change of Direction Speed and Agility)
Figures

Figure 1

Open AccessFeature PaperArticle
Relationships between Unilateral Muscle Strength Qualities and Change of Direction in Adolescent Team-Sport Athletes
Received: 3 August 2018 / Revised: 17 August 2018 / Accepted: 20 August 2018 / Published: 20 August 2018
Cited by 3 | PDF Full-text (247 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previous studies have reported an association between global measures of bilateral strength and change of direction (COD) ability. Yet, little is known about the association between unilateral muscle strength qualities and COD ability. The aim of this study was to explore the associations [...] Read more.
Previous studies have reported an association between global measures of bilateral strength and change of direction (COD) ability. Yet, little is known about the association between unilateral muscle strength qualities and COD ability. The aim of this study was to explore the associations between unilateral muscle strength qualities and COD measures (COD speed (CODS) and COD deficit) when matched limb-for-limb (i.e., right limb vs. right limb, left limb vs. left limb) in adolescent team-sport athletes. One hundred and fifteen athletes (56 males, 59 females) active in cricket, netball, and basketball participated in this investigation. Each player performed trials of countermovement jump (CMJ), single-leg hop (SLH), isometric mid-thigh pull (IMTP) and eccentric knee extensor torque (ECC-EXT) to assess muscle strength qualities and 505 and modified 505 (505mod) to evaluate COD ability. Moderate-to-large correlations were observed between SLH and CODS (r = −0.43 to −0.67). Another important finding was that CMJ measures demonstrated moderate-to-large correlations with CODS (r = −0.38 to −0.69) and small-to-moderate correlations with COD deficit (r = −0.24 to −0.45). COD is underpinned by distinct muscle strength qualities and each contribute to specific phases of a COD task. It is therefore likely that such connections exist between muscle strength qualities and COD, with all qualities contributing to overall COD ability. Full article
(This article belongs to the Special Issue Assessment and Development of Change of Direction Speed and Agility)
Sports EISSN 2075-4663 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top