Physical Qualities Pertaining to Shorter and Longer Change-of-Direction Speed Test Performance in Men and Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.3. 20 m Sprint
2.4. Standing Broad Jump (SBJ)
2.5. Lateral Jump (LJ)
2.6. Illinois Agility Test (IAT)
2.7. 505 Test
2.8. Vertical Jump (VJ)
2.9. Isometric Midthigh Pull (IMTP)
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
COD | Change-of-direction |
m | Meter |
VJ | Vertical jump |
LJ | Lateral jump |
r | Correlation coefficient |
SBJ | Standing broad jump |
IMTP | Isometric midthigh pull |
s | Seconds |
IAT | Illinois agility test |
kg | Kilograms |
cm | Centimeters |
PAPw | Peak anaerobic power measured in watts |
P:BM | Power-to-body mass ratio |
N | Newtons |
SD | Standard deviation |
p | Significance |
w | Watts |
w·kg−1 | Watts per kilogram body mass |
N·kg−1 | Newtons per kilogram body mass |
L | Left |
R | Right |
References
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Hewit, J.K.; Cronin, J.B.; Hume, P.A. Kinematic factors affecting fast and slow straight and change-of-direction acceleration times. J. Strength Cond. Res. 2013, 27, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Hewit, J.K.; Cronin, J.B.; Hume, P.A. Understanding change of direction performance: A technical analysis of a 180° aerial catch and turn task. Int. J. Sports Sci. Coach. 2012, 7, 503–514. [Google Scholar] [CrossRef]
- Nimphius, S.; Callaghan, S.J.; Bezodis, N.E.; Lockie, R.G. Change of direction and agility tests: Challenging our current measures of performance. Strength Cond. J. 2018, 40, 26–38. [Google Scholar] [CrossRef]
- Lockie, R.G. Testing, assessment, and monitoring of agility and quickness. In Developing Agility and Quickness; Dawes, J.J., Ed.; Human Kinetics: Champaign, IL, USA, 2019; Volume 2, pp. 77–98. [Google Scholar]
- Delaney, J.A.; Scott, T.J.; Ballard, D.A.; Duthie, G.M.; Hickmans, J.A.; Lockie, R.G.; Dascombe, B.J. Contributing factors to change-of-direction ability in professional rugby league players. J. Strength Cond. Res. 2015, 29, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Dawes, J.J.; Jones, M.T. Relationships between linear speed and lower-body power with change-of-direction speed in national collegiate athletic association divisions i and ii women soccer athletes. Sports 2018, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Orjalo, A.J.; Amran, V.L.; Davis, D.L.; Risso, F.G.; Jalilvand, F. An introductory analysis as to the influence of lower-body power on multidirectional speed in collegiate female rugby players. Sport Sci. Rev. 2016, 25, 113–134. [Google Scholar] [CrossRef] [Green Version]
- Spiteri, T.; Nimphius, S.; Hart, N.H.; Specos, C.; Sheppard, J.M.; Newton, R.U. Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J. Strength Cond. Res. 2014, 28, 2415–2423. [Google Scholar] [CrossRef]
- Lockie, R.G. Change-of-direction deficit in collegiate women’s rugby union players. FU Phys. Ed. Sport 2018, 16, 19–31. [Google Scholar] [CrossRef]
- Fukuda, D.H.; Smith, A.E.; Kendall, K.L.; Cramer, J.T.; Stout, J.R. The determination of critical rest interval from the intermittent critical velocity test in club-level collegiate hockey and rugby players. J. Strength Cond. Res. 2011, 25, 889–895. [Google Scholar] [CrossRef]
- McFarland, I.; Dawes, J.J.; Elder, C.L.; Lockie, R.G. Relationship of two vertical jumping tests to sprint and change of direction speed among male and female collegiate soccer players. Sports 2016, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Crawley, A.A.; Sherman, R.A.; Crawley, W.R.; Cosio-Lima, L.M. Physical fitness of police academy cadets: Baseline characteristics and changes during a 16-week academy. J. Strength Cond. Res. 2016, 30, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Boyce, R.W.; Jones, G.R.; Schendt, K.E.; Lloyd, C.L.; Boone, E.L. Longitudinal changes in strength of police officers with gender comparisons. J. Strength Cond. Res. 2009, 23, 2411–2418. [Google Scholar] [CrossRef] [PubMed]
- Childs, J.D.; Teyhen, D.S.; Casey, P.R.; McCoy-Singh, K.A.; Feldtmann, A.W.; Wright, A.C.; Dugan, J.L.; Wu, S.S.; George, S.Z. Effects of traditional sit-up training versus core stabilization exercises on short-term musculoskeletal injuries in us army soldiers: A cluster randomized trial. Phys. Ther. 2010, 90, 1404–1412. [Google Scholar] [CrossRef] [PubMed]
- Mala, J.; Szivak, T.K.; Flanagan, S.D.; Comstock, B.A.; Laferrier, J.Z.; Maresh, C.M.; Kraemer, W.J. The role of strength and power during performance of high intensity military tasks under heavy load carriage. US Army Med. Dep. J. 2015, 3–11. [Google Scholar]
- Jones, B.H.; Bovee, M.W.; Harris, J.M., 3rd; Cowan, D.N. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Sports Med. 1993, 21, 705–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, B.L.; Heishman, A.D.; Campbell, J.A. The effects of a periodized vs. Traditional military training program on 2-mile run performance during the Army Physical Fitness Test (APFT). J. Strength Cond. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Cesario, K.A.; Dulla, J.M.; Moreno, M.R.; Bloodgood, A.M.; Dawes, J.J.; Lockie, R.G. Relationships between assessments in a physical ability test for law enforcement: Is there redundancy in certain assessments? Int. J. Exerc. Sci. 2018, 11, 1063–1073. [Google Scholar]
- Lockie, R.G.; Ruvalcaba, T.R.; Stierli, M.; Dulla, J.M.; Dawes, J.J.; Orr, R.M. Waist circumference and waist-to-hip ratio in law enforcement agency recruits: Relationship to performance in physical fitness tests. J. Strength Cond. Res. 2018. [Google Scholar] [CrossRef]
- Lockie, R.G.; Stierli, M.; Dawes, J.J.; Cesario, K.A.; Moreno, M.R.; Bloodgood, A.M.; Orr, R.M.; Dulla, J.M. Are there similarities in physical fitness characteristics of successful candidates attending law enforcement training regardless of training cohort? J. Trainol. 2018, 7, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Lockie, R.G.; Balfany, K.; Bloodgood, A.M.; Moreno, M.R.; Cesario, K.A.; Dulla, J.M.; Dawes, J.J.; Orr, R.M. The influence of physical fitness on reasons for academy separation in law enforcement recruits. Int. J. Environ. Res. Public Health 2019, 16, 372. [Google Scholar] [CrossRef]
- Lockie, R.G.; Dawes, J.J.; Balfany, K.; Gonzales, C.E.; Beitzel, M.M.; Dulla, J.M.; Orr, R.M. Physical fitness characteristics that relate to Work Sample Test Battery performance in law enforcement recruits. Int. J. Environ. Res. Public Health 2018, 15, 2477. [Google Scholar] [CrossRef] [PubMed]
- Steinhagen, M.R.; Meyers, M.C.; Erickson, H.H.; Noble, L.; Richardson, M.T. Physiological profile of college club-sport lacrosse athletes. J. Strength Cond. Res. 1998, 12, 226–231. [Google Scholar]
- Lockie, R.G.; Birminagham-Babauta, S.A.; Stokes, J.J.; Liu, T.M.; Risso Fabrice, G.; Lazar, A.; Giuliano, D.V.; Orjalo Ashley, J.; Moreno, M.R.; Stage, A.A.; et al. An analysis of collegiate club-sport female lacrosse players: Sport-specific field test performance and the influence of stick carry on speed. Int. J. Exerc. Sci. 2018, 11, 269–280. [Google Scholar]
- Lockie, R.G.; Fazilat, B.; Dulla, J.M.; Stierli, M.; Orr, R.M.; Dawes, J.J.; Pakdamanian, K. A retrospective and comparative analysis of the physical fitness of custody assistant classes prior to academy training. Sport Exerc. Med. Open J. 2018, 4, 44–51. [Google Scholar] [CrossRef]
- Cesario, K.; Moreno, M.; Bloodgood, A.; Lockie, R. A Sample Ability-Based Conditioning Session for Law Enforcement and Correctional Recruits; TSAC Report; TSAC: Colorado Springs, CO, USA, 2019; pp. 6–11. [Google Scholar]
- Moreno, M.; Cesario, K.; Bloodgood, A.; Lockie, R. Circuit Strength Training with Ability-Based Modifications for Law Enforcement Recruits; TSAC Report; TSAC: Colorado Springs, CO, USA, 2018; pp. 26–33. [Google Scholar]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of direction deficit: A more isolated measure of change of direction performance than total 505 time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. Comparison of change of direction speed performance and asymmetries between team-sport athletes: Application of change of direction deficit. Sports 2018, 6, 174. [Google Scholar] [CrossRef]
- Lockie, R.G.; Stage, A.A.; Stokes, J.J.; Orjalo, A.J.; Davis, D.L.; Giuliano, D.V.; Moreno, M.R.; Risso, F.G.; Lazar, A.; Birmingham-Babauta, S.A.; et al. Relationships and predictive capabilities of jump assessments to soccer-specific field test performance in Division I collegiate players. Sports 2016, 4, 56. [Google Scholar] [CrossRef]
- Thomas, C.; Dos’Santos, T.; Comfort, P.; Jones, P.A. Relationships between unilateral muscle strength qualities and change of direction in adolescent team-sport athletes. Sports 2018, 6, 83. [Google Scholar] [CrossRef]
- Vescovi, J.D.; McGuigan, M.R. Relationships between sprinting, agility, and jump ability in female athletes. J. Sports Sci. 2008, 26, 97–107. [Google Scholar] [CrossRef]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D.; Berry, S.P. Reliability and validity of a new test of change-of-direction speed for field-based sports: The change-of-direction and acceleration test (CODAT). J. Sports Sci. Med. 2013, 12, 88–96. [Google Scholar] [PubMed]
- Wilkinson, M.; Leedale-Brown, D.; Winter, E.M. Validity of a squash-specific test of change-of-direction speed. Int. J. Sports Physiol. Perform. 2009, 4, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Physiological characteristics of junior and senior rugby league players. Br. J. Sports Med. 2002, 36, 334–339. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, S.; Sullivan, L.O.; Davies, B.; Wiltshire, H.; Baker, J.S. Interrelationships between measured running intensities and agility performance in subelite rugby union players. Res. Sports Med. 2009, 17, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Váczi, M.; Tollár, J.; Meszler, B.; Juhász, I.; Karsai, I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J. Hum. Kinet. 2013, 36, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, J.D.; Brown, T.D.; Murray, T.M. Positional characteristics of physical performance in division i college female soccer players. J. Sports Med. Phys. Fit. 2006, 46, 221–226. [Google Scholar]
- Vescovi, J.D.; Rupf, R.; Brown, T.D.; Marques, M.C. Physical performance characteristics of high-level female soccer players 12-21 years of age. Scand. J. Med. Sci. Sports 2011, 21, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Cheng, D.; Lee, J.; Shock, T.; Kennedy, K.; Pate, S. Use of the bootstrap method to develop a physical fitness test for public safety officers who serve as both police officers and firefighters. Proceedings (Bayl. Univ. Med. Center) 2014, 27, 199–202. [Google Scholar] [CrossRef]
- Orr, R.; Schram, B.; Pope, R. A comparison of military and law enforcement body armour. Int. J. Environ. Res. Public Health 2018, 15, 339. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.Q.; Clasey, J.L.; Yates, J.W.; Koebke, N.C.; Palmer, T.G.; Abel, M.G. Relationship of physical fitness measures vs. Occupational physical ability in campus law enforcement officers. J. Strength Cond. Res. 2015, 29, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- Raya, M.A.; Gailey, R.S.; Gaunaurd, I.A.; Jayne, D.M.; Campbell, S.M.; Gagne, E.; Manrique, P.G.; Muller, D.G.; Tucker, C. Comparison of three agility tests with male servicemembers: Edgren side step test, t-test, and illinois agility test. J. Rehabil. Res. Dev. 2013, 50, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Foulis, S.A.; Sharp, M.A.; Redmond, J.E.; Frykman, P.N.; Warr, B.J.; Gebhardt, D.L.; Baker, T.A.; Canino, M.C.; Zambraski, E.J. U.S. Army physical demands study: Development of the occupational physical assessment test for combat arms soldiers. J. Sci. Med. Sport 2017, 20, S74–S78. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.C.; Springer, B.A.; McNulty, V.; Butler, N.L. Physical fitness. Mil. Med. 2010, 175, 14–20. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Berry, S.P.; Cooke, E.R.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. Relationship between unilateral jumping ability and asymmetry on multidirectional speed in team-sport athletes. J. Strength Cond. Res. 2014, 28, 3557–3566. [Google Scholar] [CrossRef] [PubMed]
- Lockie, R.G.; Jalilvand, F. Reliability and criterion validity of the Arrowhead change-of-direction speed test for soccer. FU Phys. Ed. Sport 2017, 15, 139–151. [Google Scholar]
- Lockie, R.G.; Callaghan, S.J.; Jeffriess, M.D. Analysis of specific speed testing for cricketers. J. Strength Cond. Res. 2013, 27, 2981–2988. [Google Scholar] [CrossRef] [PubMed]
- Nimphius, S.; McGuigan, M.R.; Newton, R.U. Relationship between strength, power, speed, and change of direction performance of female softball players. J. Strength Cond. Res. 2010, 24, 885–895. [Google Scholar] [CrossRef]
- Lockie, R.G.; Callaghan, S.J.; Jeffriess, M.D. Can the 505 change-of-direction speed test be used to monitor leg function following ankle sprains in team sport athletes? J. Aust. Strength Cond. 2015, 23, 10–16. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jordan, C.A.; Luczo, T.M.; Jeffriess, M.D. A preliminary investigation into the relationship between functional movement screen scores and athletic physical performance in female team sport athletes. Biol. Sport 2015, 32, 41–51. [Google Scholar] [CrossRef]
- Lockie, R.G.; Schultz, A.B.; Jordan, C.A.; Callaghan, S.J.; Jeffriess, M.D.; Luczo, T.M. Can selected functional movement screen assessments be used to identify movement deficiencies that could affect multidirectional speed and jump performance? J. Strength Cond. Res. 2015, 29, 195–205. [Google Scholar] [CrossRef]
- Lockie, R.G.; Jalilvand, F.; Orjalo, A.J.; Giuliano, D.V.; Moreno, M.R.; Wright, G.A. A methodological report: Adapting the 505 change-of-direction speed test specific to American football. J. Strength Cond. Res. 2017, 31, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. How to interpret changes in an athletic performance test. Sportscience 2004, 8, 1–7. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- McGuigan, M.R. Principles of test selection and administration. In Essentials of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 249–258. [Google Scholar]
- Darrall-Jones, J.D.; Jones, B.; Roe, G.; Till, K. Reliability and usefulness of linear sprint testing in adolescent rugby union and league players. J. Strength Cond. Res. 2016, 30, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- Winchester, J.B.; Nelson, A.G.; Landin, D.; Young, M.A.; Schexnayder, I.C. Static stretching impairs sprint performance in collegiate track and field athletes. J. Strength Cond. Res. 2008, 22, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Shalfawi, S.A.I.; Enoksen, E.; Tønnessen, E.; Ingebrigtsen, J. Assessing test-retest reliability of the portable brower speed trap ii testing system. Kinesiology 2012, 44, 24–30. [Google Scholar]
- Yeadon, M.R.; Kato, T.; Kerwin, D.G. Measuring running speed using photocells. J. Sports Sci. 1999, 17, 249–257. [Google Scholar] [CrossRef]
- Lockie, R.G.; Dawes, J.J.; Orr, R.M.; Stierli, M.; Dulla, J.M.; Orjalo, A.J. An analysis of the effects of sex and age on upper- and lower-body power for law enforcement agency recruits prior to academy training. J. Strength Cond. Res. 2018, 32, 1968–1974. [Google Scholar] [CrossRef]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-validation of three jump power equations. Med. Sci. Sports Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef]
- Dawes, J.J.; Orr, R.M.; Elder, C.L.; Krall, K.; Stierli, M.; Schilling, B. Relationship between selected measures of power and strength and linear running speed amongst Special Weapons and Tactics police officers. J. Aust. Strength Cond. 2015, 23, 23–28. [Google Scholar]
- Comfort, P.; Jones, P.A.; McMahon, J.J.; Newton, R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: Test-retest reliability. Int. J. Sports Physiol. Perform. 2015, 10, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Secomb, J.L.; Lundgren, L.E.; Farley, O.R.; Tran, T.T.; Nimphius, S.; Sheppard, J.M. Relationships between lower-body muscle structure and lower-body strength, power, and muscle-tendon complex stiffness. J. Strength Cond. Res. 2015, 29, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- James, L.P.; Roberts, L.A.; Haff, G.G.; Kelly, V.G.; Beckman, E.M. Validity and reliability of a portable isometric mid-thigh clean pull. J. Strength Cond. Res. 2017, 31, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. A Scale of Magnitude for Effect Statistics. Available online: www.sportsci.org/resource/stats/index.html (accessed on 6 October 2018).
- Dos’Santos, T.; Thomas, C.; Jones, P.A.; Comfort, P. Mechanical determinants of faster change of direction speed performance in male athletes. J. Strength Cond. Res. 2017, 31, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A.; Volek, J.S.; Mazzetti, S.A.; Gómez, A.L. The effect of the meridian shoe on vertical jump and sprint performances following short-term combined plyometric/sprint and resistance training. J. Strength Cond. Res. 2000, 14, 228–238. [Google Scholar]
Variables | Combined (n = 43) | Males (n = 21) | Females (n = 22) | p |
---|---|---|---|---|
505 L (s) | 2.71 ± 0.29 | 2.54 ± 0.19 | 2.90 ± 0.25 * | <0.01 |
COD Deficit L (s) | 0.70 ± 0.19 | 0.67 ± 0.19 | 0.74 ± 0.18 | 0.18 |
505 R (s) | 2.73 ± 0.30 | 2.53 ± 0.16 | 2.94 ± 0.26 * | <0.01 |
COD Deficit R (s) | 0.72 ± 0.18 | 0.66 ± 0.16 | 0.78 ± 0.17 * | 0.02 |
IAT (s) | 17.87 ± 1.68 | 16.78 ± 0.99 | 19.02 ± 1.49 * | <0.01 |
0–5 m (s) | 1.18 ± 0.12 | 1.10 ± 0.07 | 1.26 ± 0.12 * | <0.01 |
0–10 m (s) | 2.01 ± 0.21 | 1.87 ± 0.11 | 2.16 ± 0.19 * | <0.01 |
0–20 m (s) | 3.54 ± 0.40 | 3.26 ± 0.20 | 3.83 ± 0.34 * | <0.01 |
VJ (cm) | 49.53 ± 13.17 | 59.05 ± 10.54 | 39.57 ± 6.62 * | <0.01 |
PAPw (w) | 4318.31 ± 1108.12 | 5203.36 ± 637.03 | 3391.12 ± 623.10 * | <0.01 |
P:BM (w·kg−1) | 57.83 ± 10.08 | 64.59 ± 8.19 | 50.75 ± 6.31 * | <0.01 |
SBJ (m) | 1.92 ± 0.41 | 2.23 ± 0.25 | 1.59 ± 0.25 * | <0.01 |
LJ L (m) | 1.44 ± 0.30 | 1.62 ± 0.25 | 1.26 ± 0.22 * | <0.01 |
LJ R (m) | 1.43 ± 0.32 | 1.64 ± 0.25 | 1.21 ± 0.21 * | <0.01 |
IMTP (N) | 1936.29 ± 488.39 | 2324.10 ± 275.05 | 1530.01 ± 287.58 * | <0.01 |
Relative IMTP (N·kg−1) | 25.91 ± 4.20 | 28.74 ± 2.61 | 22.95 ± 3.44 * | <0.01 |
Variables | 505 L | COD Deficit L | 505 R | COD Deficit R | IAT | |
---|---|---|---|---|---|---|
0–5 m | r p | 0.46 * <0.01 | −0.25 0.11 | 0.58 * <0.01 | −0.14 0.40 | 0.57 * <0.01 |
0–10 m | r p | 0.57 * <0.01 | −0.15 0.35 | 0.64 * <0.01 | −0.08 0.61 | 0.64 * <0.01 |
0–20 m | r p | 0.64 * <0.01 | −0.03 0.86 | 0.71 * <0.01 | 0.04 0.82 | 0.74 * <0.01 |
VJ | r p | −0.43 * 0.01 | −0.18 0.26 | −0.46 * <0.01 | −0.22 0.16 | −0.45 * <0.01 |
PAPw | r p | −0.17 0.28 | −0.15 0.35 | −0.26 0.10 | −0.27 0.08 | −0.24 0.13 |
P:BM | r p | −0.51 * <0.01 | −0.24 0.14 | −0.51 * <0.01 | −0.24 0.13 | −0.51 * <0.01 |
SBJ | r p | −0.60 * <0.01 | −0.18 0.26 | −0.61 * <0.01 | −0.20 0.20 | −0.66 * <0.01 |
LJ L | r p | −0.62 * <0.01 | −0.43 * <0.01 | −0.60 * <0.01 | −0.44 * <0.01 | −0.67 * <0.01 |
LJ R | r p | −0.55 * <0.01 | −0.34 * 0.03 | −0.57 * <0.01 | −0.39 * 0.01 | −0.66 * <0.01 |
IMTP | r p | −0.15 0.36 | −0.15 0.34 | −0.25 0.11 | −0.30 0.06 | −0.30 0.06 |
Relative IMTP | r p | −0.50 * <0.01 | −0.18 0.25 | −0.54 * <0.01 | −0.24 0.13 | −0.63 * <0.01 |
Variables | R | R2 | Adjusted R2 | |
---|---|---|---|---|
505 L | Sex | 0.64 ** | 0.41 | 0.39 |
Sex, 0–20 m sprint | 0.81 *** | 0.65 | 0.64 | |
Sex, 0–20 m sprint, Left-leg LJ | 0.85 *** | 0.72 | 0.70 | |
505 R | Sex | 0.69 ** | 0.48 | 0.47 |
Sex, 0–20 m sprint | 0.86*** | 0.73 | 0.73 | |
Sex, 0–20 m sprint, Left-leg LJ | 0.89 *** | 0.77 | 0.77 | |
COD Deficit R | Sex | 0.36 * | 0.13 | 0.11 |
Sex, Left-leg LJ | 0.55 ** | 0.30 | 0.27 | |
IAT | Sex | 0.68 ** | 0.45 | 0.44 |
Sex, 0–20 m sprint | 0.87 *** | 0.76 | 0.74 | |
Sex, 0–20 m sprint, Right-leg LJ | 0.91 **** | 0.82 | 0.81 | |
Sex, 0–20 m sprint, Right-leg LJ, Relative IMTP | 0.93 **** | 0.86 | 0.84 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lockie, R.G.; Post, B.K.; Dawes, J.J. Physical Qualities Pertaining to Shorter and Longer Change-of-Direction Speed Test Performance in Men and Women. Sports 2019, 7, 45. https://doi.org/10.3390/sports7020045
Lockie RG, Post BK, Dawes JJ. Physical Qualities Pertaining to Shorter and Longer Change-of-Direction Speed Test Performance in Men and Women. Sports. 2019; 7(2):45. https://doi.org/10.3390/sports7020045
Chicago/Turabian StyleLockie, Robert G., Brett K. Post, and J. Jay Dawes. 2019. "Physical Qualities Pertaining to Shorter and Longer Change-of-Direction Speed Test Performance in Men and Women" Sports 7, no. 2: 45. https://doi.org/10.3390/sports7020045