Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Method
2.2. Subjects
2.3. Procedures
2.4. Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aslan, A.; Acikada, C.; Güvenç, A.; Gören, H.; Hazir, T.; Özkara, A. Metabolic demands of match performance in young soccer players. J. Sports Sci. Med. 2012, 11, 170. [Google Scholar]
- Dalen, T.; Ingebrigtsen, J.; Ettema, G.; Hjelde, G.H.; Wisløff, U. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J. Strength Cond. Res. 2016, 30, 351–359. [Google Scholar] [CrossRef]
- Dalen, T.; Lorås, H.; Hjelde, G.H.; Kjøsnes, T.N.; Wisløff, U. Accelerations–a new approach to quantify physical performance decline in male elite soccer? Eur. J. Sport Sci. 2019, 19, 1015–1023. [Google Scholar] [CrossRef]
- Bangsbo, J. The physiology of soccer--with special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Little, T.; Williams, A. Specificity of Acceleration, Maximum Speed and Agility in Professional Soccer Players; Routledge: London, UK, 2003. [Google Scholar]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef]
- Bishop, D.; Girard, O.; Mendez-Villanueva, A. Repeated-sprint ability—Part II. Sports Med. 2011, 41, 741–756. [Google Scholar] [CrossRef]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; Dawson, B.; Henry, G.J. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int. J. Sports Sci. Coach. 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J.; Levin, G.; Chaouachi, A. Understanding change of direction ability in sport. Sports Med. 2008, 38, 1045–1063. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, A.; Fernández-García, J.C.; Chinchilla-Minguet, J.L.; Carnero, E.Á. Relationship between muscular strength and sprints with changes of direction. J. Strength Cond. Res. 2012, 26, 725–732. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, P.; O’Donoghue, P. O-007 Deceleration movements performed during FA Premier League soccer matches. J. Sports Sci. Med. 2007, 6, 6. [Google Scholar]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Keller, S.; Koob, A.; Corak, D.; Von Schöning, V.; Born, D.-P. How to Improve Change-of-Direction Speed in Junior Team Sport Athletes—Horizontal, Vertical, Maximal, or Explosive Strength Training? J. Strength Cond. Res. 2020, 34, 473–482. [Google Scholar] [CrossRef]
- Chatzinikolaou, A.; Michaloglou, K.; Avloniti, A.; Leontsini, D.; Deli, C.K.; Vlachopoulos, D.; Gracia-Marco, L.; Arsenis, S.; Athanailidis, I.; Draganidis, D. The trainability of adolescent soccer players to brief periodized complex training. Int. J. Sports Physiol. Perf. 2018, 13, 645–655. [Google Scholar] [CrossRef]
- De Hoyo, M.; Gonzalo-Skok, O.; Sañudo, B.; Carrascal, C.; Plaza-Armas, J.R.; Camacho-Candil, F.; Otero-Esquina, C. Comparative effects of in-season full-back squat, resisted sprint training, and plyometric training on explosive performance in U-19 elite soccer players. J. Strength Cond. Res. 2016, 30, 368–377. [Google Scholar] [CrossRef]
- Torres-Torrelo, J.; Rodríguez-Rosell, D.; González-Badillo, J.J. Light-load maximal lifting velocity full squat training program improves important physical and skill characteristics in futsal players. J. Sports Sci. 2017, 35, 967–975. [Google Scholar] [CrossRef]
- Speirs, D.E.; Bennett, M.A.; Finn, C.V.; Turner, A.P. Unilateral vs. bilateral squat training for strength, sprints, and agility in academy rugby players. J. Strength Cond. Res. 2016, 30, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Tous-Fajardo, J.; Gonzalo-Skok, O.; Arjol-Serrano, J.L.; Tesch, P. Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int. J. Sports Physiol. Perf. 2016, 11, 66–73. [Google Scholar] [CrossRef]
- Alves, J.M.V.M.; Rebelo, A.N.; Abrantes, C.; Sampaio, J. Short-term effects of complex and contrast training in soccer players’ vertical jump, sprint, and agility abilities. J. Strength Cond. Res. 2010, 24, 936–941. [Google Scholar] [CrossRef]
- Beato, M.; Bianchi, M.; Coratella, G.; Merlini, M.; Drust, B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J. Strength Cond. Res. 2018, 32, 289–296. [Google Scholar] [CrossRef]
- Young, W.; Rogers, N. Effects of small-sided game and change-of-direction training on reactive agility and change-of-direction speed. J. Sports Sci. 2014, 32, 307–314. [Google Scholar] [CrossRef]
- Milanović, Z.; Sporiš, G.; Trajković, N.; James, N.; Šamija, K. Effects of a 12 week saq training programme on agility with and without the ball among young soccer players. J. Sports Sci. Med. 2013, 12, 97. [Google Scholar]
- Chaouachi, A.; Chtara, M.; Hammami, R.; Chtara, H.; Turki, O.; Castagna, C. Multidirectional sprints and small-sided games training effect on agility and change of direction abilities in youth soccer. J. Strength Cond. Res. 2014, 28, 3121–3127. [Google Scholar] [CrossRef]
- Chaalali, A.; Rouissi, M.; Chtara, M.; Owen, A.; Bragazzi, N.; Moalla, W.; Chaouachi, A.; Amri, M.; Chamari, K. Agility training in young elite soccer players: Promising results compared to change of direction drills. Biol. Sport 2016, 33, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Campillo, R.; Meylan, C.; Álvarez, C.; Henríquez-Olguín, C.; Martínez, C.; Cañas-Jamett, R.; Andrade, D.C.; Izquierdo, M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J. Strength Cond. Res. 2014, 28, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Campillo, R.; Burgos, C.H.; Henríquez-Olguín, C.; Andrade, D.C.; Martínez, C.; Álvarez, C.; Castro-Sepúlveda, M.; Marques, M.C.; Izquierdo, M. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1317–1328. [Google Scholar] [CrossRef]
- Asadi, A.; Ramírez-Campillo, R. Effects of cluster vs. traditional plyometric training sets on maximal-intensity exercise performance. Medicina 2016, 52, 41–45. [Google Scholar] [CrossRef]
- Hammami, M.; Negra, Y.; Aouadi, R.; Shephard, R.J.; Chelly, M.S. Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J. Strength Cond. Res. 2016, 30, 3312–3320. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Gonzalo-Skok, O.; Rodríguez-Fernandez, A.; Carretero, M.; Nakamura, F.Y. Specific changes in young soccer player’s fitness after traditional bilateral vs. unilateral combined strength and plyometric training. Front. Physiol. 2018, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Otero-Esquina, C.; De Hoyo Lora, M.; Gonzalo-Skok, Ó.; Domínguez-Cobo, S.; Sánchez, H. Is strength-training frequency a key factor to develop performance adaptations in young elite soccer players? Eur. J. Sport Sci. 2017, 17, 1241–1251. [Google Scholar] [CrossRef]
- Arazi, H.; Asadi, A.; Roohi, S. Enhancing muscular performance in women: Compound versus complex, traditional resistance and plyometric training alone. J. Musc. Res. 2014, 17, 1450007. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; McFarland, J.E.; Keiper, F.B.; Tevlin, W.; Ratamess, N.A.; Kang, J.; Hoffman, J.R. Effects of a short-term plyometric and resistance training program on fitness performance in boys age 12 to 15 years. J. Sport Sci. Med. 2007, 6, 519. [Google Scholar]
- Makhlouf, I.; Chaouachi, A.; Chaouachi, M.; Ben Othman, A.; Granacher, U.; Behm, D.G. Combination of agility and plyometric training provides similar training benefits as combined balance and plyometric training in young soccer players. Front. Physiol. 2018, 9, 1611. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.; French, D.; Hayes, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef] [Green Version]
- Falch, H.N.; Rædergård, H.G.; Van den Tillaar, R. Effect of Different Physical Training Forms on Change of Direction Ability: A Systematic Review and Meta-analysis. Sports Med. open 2019, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; García-Pinillos, F.; García-Ramos, A.; Yanci, J.; Gentil, P.; Chaabene, H.; Granacher, U. Effects of different plyometric training frequencies on components of physical fitness in amateur female soccer players. Front. Physiol. 2018, 9, 934. [Google Scholar] [CrossRef] [Green Version]
- Yanci, J.; Los Arcos, A.; Camara, J.; Castillo, D.; García, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players’ performance. Res. Sports Med. 2016, 24, 308–319. [Google Scholar] [CrossRef]
- Asadi, A. Effects of in-season short-term plyometric training on jumping and agility performance of basketball players. Sport Sci. Health 2013, 9, 133–137. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y. The effect of plyometric training volume on athletic performance in prepubertal male soccer players. Int. J. Sports Physiol. Perf. 2017, 12, 1205–1211. [Google Scholar] [CrossRef]
- Chaabene, H.; Prieske, O.; Negra, Y.; Granacher, U. Change of direction speed: Toward a strength training approach with accentuated eccentric muscle actions. Sports Med. 2018, 48, 1773–1779. [Google Scholar] [CrossRef]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Meth. 2009, 8, 26. [Google Scholar] [CrossRef]
- Draper, J. The 505 test: A test for agility in horizontal plane. Aust. J. Sci. Med. Sport 1985, 17, 15–18. [Google Scholar]
- Stewart, P.F.; Turner, A.N.; Miller, S.C. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand. J. Med. Sci Sports 2014, 24, 500–506. [Google Scholar] [CrossRef]
- Stone, M.; Stone, M.; Lamont, H. Explosive exercise. Nat. Strength Cond. Assoc. J. 1993, 15, 7–15. [Google Scholar] [CrossRef]
- Jones, P.; Bampouras, T.; Marrin, K. An investigation into the physical determinants of change of direction speed. J. Sports Med. Phys. Fitn. 2009, 49, 97–104. [Google Scholar]
- Lockie, R.G.; Schultz, A.B.; Callaghan, S.J.; Jeffriess, M.D.; Luczo, T.M. Contribution of leg power to multidirectional speed in field sport athletes. J. Aust. Strength Cond. 2014, 22, 16–24. [Google Scholar]
- Meylan, C.; McMaster, T.; Cronin, J.; Mohammad, N.I.; Rogers, C.; DeKlerk, M. Single-leg lateral, horizontal, and vertical jump assessment: Reliability, interrelationships, and ability to predict sprint and change-of-direction performance. J. Strength Cond. Res. 2009, 23, 1140–1147. [Google Scholar] [CrossRef]
- Vescovi, J.D.; Mcguigan, M.R. Relationships between sprinting, agility, and jump ability in female athletes. J. Sports Sci. 2008, 26, 97–107. [Google Scholar] [CrossRef]
- Salaj, S.; Markovic, G. Specificity of jumping, sprinting, and quick change-of-direction motor abilities. J. Sttrength Cond. Res. 2011, 25, 1249–1255. [Google Scholar] [CrossRef]
- Rand, M.K.; Ohtsuki, T. EMG analysis of lower limb muscles in humans during quick change in running directions. Gait post. 2000, 12, 169–183. [Google Scholar] [CrossRef]
- Houck, J. Muscle activation patterns of selected lower extremity muscles during stepping and cutting tasks. J. Electromyogr. Kinesiol. 2003, 13, 545–554. [Google Scholar] [CrossRef]
- Simonsen, E.B.; Magnusson, S.; Bencke, J.; Naesborg, H.; Havkrog, M.; Ebstrup, J.; Sørensen, H. Can the hamstring muscles protect the anterior cruciate ligament during a side-cutting maneuver? Scan. J. Med. Sci. Sports 2000, 10, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Bencke, J.; Curtis, D.; Krogshede, C.; Jensen, L.K.; Bandholm, T.; Zebis, M.K. Biomechanical evaluation of the side-cutting manoeuvre associated with ACL injury in young female handball players. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 1876–1881. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Gerritsen, K.G.; Litjens, M.C.; Van Soest, A.J. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef]
- Mackala, K.; Stodólka, J.; Siemienski, A.; Coh, M. Biomechanical analysis of squat jump and countermovement jump from varying starting positions. J. Strength Cond. Res. 2013, 27, 2650–2661. [Google Scholar] [CrossRef]
- Massó, N.; Rey, F.; Romero, D.; Gual, G. Surface electromyography applications in the sport. ApuntsMed. Esport. 2010, 45, 121–130. [Google Scholar]
- Pagaduan, J.C.; Pojskić, H.; Užičanin, E.; Babajić, F. Effect of various warm-up protocols on jump performance in college football players. J. Hum. Kinet. 2012, 35, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar]
- Van den Tillaar, R.; Lerberg, E.; Von Heimburg, E. Comparison of three types of warm-up upon sprint ability in experienced soccer players. J. Sport Health Sci. 2019, 8, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Van Gelder, L.H.; Bartz, S.D. The effect of acute stretching on agility performance. J. Strength Cond. Res. 2011, 25, 3014–3021. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988; p. 174. [Google Scholar]
- Bourgeois, F.; McGuigan, M.; Gill, N.; Gamble, G. Physical characteristics and performance in change of direction tasks: A brief review and training considerations. J. Aust. Strength Cond. 2017, 25, 104–117. [Google Scholar]
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Angle and Velocity on Change of Direction Biomechanics: An Angle-Velocity Trade-Off. Sports Med. 2018, 48, 2235–2253. [Google Scholar] [CrossRef] [Green Version]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of direction deficit: A more isolated measure of change of direction performance than total 505 time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef]
- Nimphius, S.; Geib, G.; Spiteri, T.; Carlisle, D. Change of direction” deficit measurement in Division I American football players. J. Aust. Strength Cond. 2013, 21, 115–117. [Google Scholar]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Comfort, P.; Stewart, A.; Bloom, L.; Clarkson, B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J. Strength Cond. Res. 2014, 28, 173–177. [Google Scholar] [CrossRef]
- Köklü, Y.; Alemdaroğlu, U.; Özkan, A.; Koz, M.; Ersöz, G. The relationship between sprint ability, agility and vertical jump performance in young soccer players. Sci. Sports 2015, 30, e1–e5. [Google Scholar] [CrossRef]
- Coh, M.; Mackala, K. Differences between the elite and subelite sprinters in kinematic and dynamic determinations of countermovement jump and drop jump. J. Strength Cond. Res. 2013, 27, 3021–3027. [Google Scholar] [CrossRef]
- Andrews, J.R.; McLeod, W.D.; Ward, T.; Howard, K. The cutting mechanism. Am. J. Sports Med. 1977, 5, 111–121. [Google Scholar] [CrossRef]
- Marshall, B.M.; Franklyn-Miller, A.D.; King, E.A.; Moran, K.A.; Strike, S.C.; Falvey, É.C. Biomechanical factors associated with time to complete a change of direction cutting maneuver. J. Strength Cond. Res. 2014, 28, 2845–2851. [Google Scholar] [CrossRef]
- Neptune, R.R.; Wright, I.C.; Van Den Bogert, A.J. Muscle coordination and function during cutting movements. Med. Sci. Sports Exerc. 1999, 31, 294–302. [Google Scholar] [CrossRef]
- Hewit, J.; Cronin, J.; Button, C.; Hume, P. Understanding deceleration in sport. Strength Cond. J. 2011, 33, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Nagano, A.; Komura, T.; Fukashiro, S.; Himeno, R. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping. J. Electromyogr Kinesiol 2005, 15, 367–376. [Google Scholar] [CrossRef]
- Maniar, N.; Schache, A.G.; Cole, M.H.; Opar, D.A. Lower-limb muscle function during sidestep cutting. J. Biomech 2019, 82, 186–192. [Google Scholar] [CrossRef]
- McLean, S.G.; Huang, X.; Su, A.; Van Den Bogert, A.J. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 2004, 19, 828–838. [Google Scholar] [CrossRef] [Green Version]
- McLean, S.G.; Huang, X.; Van den Bogert, A.J. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clin. Biomech. 2005, 20, 863–870. [Google Scholar] [CrossRef] [Green Version]
- Fukashiro, S.; Besier, T.F.; Barrett, R.; Cochrane, J.; Nagano, A.; Lloyd, D.G. Direction control in standing horizontal and vertical jumps. Int. J. Sport Health Sci. 2005, 3, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Nagano, A.; Komura, T.; Fukashiro, S. Optimal coordination of maximal-effort horizontal and vertical jump motions–a computer simulation study. Biomed. Eng. Onl. 2007, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Bosco, C.; Viitasalo, J.; Komi, P.; Luhtanen, P. Combined effect of elastic energy and myoelectrical potentiation during stretch-shortening cycle exercise. Acta Physiol. Scand. 1982, 114, 557–565. [Google Scholar] [CrossRef]
- Tsiokanos, A.; Kellis, E.; Jamurtas, A.; Kellis, S. The relationship between jumping performance and isokinetic strength of hip and knee extensors and ankle plantar flexors. Isokin. Exerc. Sci. 2002, 10, 107–115. [Google Scholar] [CrossRef]
- Nuzzo, J.L.; McBride, J.M.; Cormie, P.; McCaulley, G.O. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J. Strength Cond. Res. 2008, 22, 699–707. [Google Scholar] [CrossRef]
Joint Angle | Vertical Unilateral | Vertical Bilateral | Horizontal Unilateral | Horizontal Bilateral |
---|---|---|---|---|
Ankle (°) | 67.9 ± 2 | 67.8 ± 1.3 | 67.9 ± 6.5 | 66.6 ± 2.4 |
Knee (°) | 92.1 ± 5.2 ‡ | 91.6 ± 6 | 88 ± 5.4 | 92.2 ± 3.4 ‡ |
Hip (°) | 68.1 ± 14.6 * | 83.8 ± 15.2 | 68.5 ± 16.7 * | 78.2 ± 9.8 |
Change of Direction Performances | Countermovement Jump Performance | ||
---|---|---|---|
COD total time (s) | 4.8 ± 0.2 | Vertical bilateral (m) | 0.445 ± 0.05 |
505-agility time (s) | 2.6 ± 0.1 | Vertical unilateral (m) | 0.275 ± 0.03 |
Peak velocity (m/s) | 6.3 ± 0.3 | Horizontal bilateral (m) | 1.76 ± 0.21 |
Contact time (s) | 1.4 ± 0.2 | Horizontal unilateral (m) | 1.38 ± 0.17 |
Change of Direction Test | Counter Movement Jump | ||||||
---|---|---|---|---|---|---|---|
Variable | 505-Agility Time | Contact Time | Peak Velocity | Vertical Bilateral | Vertical Unilateral | Horizontal Bilateral | Horizontal Unilateral |
COD total time | 0.837 * | −0.172 | −0.711 * | −0.476 * | −0.256 | −0.434 | −0.572 * |
505-agility time | −0.030 | −0.569 * | −0.099 | −0.295 | −0.163 | −0.349 | |
Contact time | −0.371 | −0.114 | 0.020 | −0.185 | 0.042 | ||
Peak approach velocity | 0.676 * | 0.425 | 0.540 * | 0.476 | |||
Vertical bilateral CMJ | 0.601 * | 0.720 * | 0.624 * | ||||
Vertical unilateral CMJ | 0.448 * | 0.505 * | |||||
Horizontal bilateral CMJ | 0.586 * |
Muscles | Change of Direction | Vertical Bilateral | Vertical Unilateral | Horizontal Bilateral | Horizontal Unilateral |
---|---|---|---|---|---|
Gluteus maximus | 337 ± 163 | 224 ± 184 | 227 ± 179 | 304 ± 301 | 287 ± 229 |
Gluteus medius | 442 ± 166 | 350 ± 374 | 401 ± 345 | 622 ± 820 | 486 ± 428 |
Adductor longus | 536 ± 241 | 270 ± 139 * | 292 ± 125 * | 382 ± 263 * | 384 ± 284 * |
Semi-tendinosus | 451 ± 133 | 154 ± 37 * | 156 ± 57 * | 343 ± 110 * | 367 ± 107 * |
Biceps femoris | 416 ± 124 | 218 ± 74 * | 233 ± 83 * | 454 ± 179 | 429 ± 152 |
Vastus lateralis | 798 ± 312 | 718 ± 291 | 759 ± 370 | 753 ± 485 | 844 ± 564 |
Rectus femoris | 481 ± 114 | 443 ± 133 | 455 ± 133 | 447 ± 345 | 473 ± 241 |
Vastus medialis | 749 ± 435 | 823 ± 368 | 783 ± 444 | 809 ± 583 | 905 ± 581 |
Gastrocnemius | 497 ± 170 | 387 ± 106 | 381 ± 125 | 533 ± 348 | 518 ± 364 |
Soleus | 757 ± 607 | 249 ± 136 | 292 ± 186 | 309 ± 243 | 346 ± 248 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nygaard Falch, H.; Guldteig Rædergård, H.; Van den Tillaar, R. Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps. Sports 2020, 8, 47. https://doi.org/10.3390/sports8040047
Nygaard Falch H, Guldteig Rædergård H, Van den Tillaar R. Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps. Sports. 2020; 8(4):47. https://doi.org/10.3390/sports8040047
Chicago/Turabian StyleNygaard Falch, Hallvard, Håvard Guldteig Rædergård, and Roland Van den Tillaar. 2020. "Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps" Sports 8, no. 4: 47. https://doi.org/10.3390/sports8040047
APA StyleNygaard Falch, H., Guldteig Rædergård, H., & Van den Tillaar, R. (2020). Relationship of Performance Measures and Muscle Activity between a 180° Change of Direction Task and Different Countermovement Jumps. Sports, 8(4), 47. https://doi.org/10.3390/sports8040047