sensors-logo

Journal Browser

Journal Browser

Special Issue "Underwater Sensors Network II"

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Sensor Networks".

Deadline for manuscript submissions: closed (31 October 2022) | Viewed by 4265

Special Issue Editor

Dr. Jaime Lloret
E-Mail Website
Guest Editor
Integrated Management Coastal Research Institute, Universitat Politecnica de Valencia, Valencia, Spain
Interests: network protocols; network algorithms; wireless sensor networks; ad hoc networks; multimedia streaming
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

About 70% of the globe is covered by water, with many underwater places yet to be monitored and supervised. In addition, there are many kinds of underwater environments. Advances in underwater sensors and underwater sensor networks are making them more accessible because they are cheaper, with higher computing capacity, and consume less battery. The range of applications where they can be used is increasing every day. This Special Issue is focused on collecting the latest applications, advances, and challenges in underwater sensor nodes and underwater sensor networks.

Authors are invited to submit complete original unpublished papers, which are not under review in any other conference or journal. The topics can be discussed in terms of the state of the art, standards, implementations, running experiments, applications, new research proposals, and industrial case studies.

Prof. Dr. Jaime Lloret
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Underwater sensor nodes
  • Devices for underwater sensing
  • Underwater wireless sensor networks
  • Topologies for underwater sensor networks
  • Underwater sensor networks communication
  • Sensor networks for aquaculture, fish farming and fish monitoring
  • Underwater surveillance and monitoring
  • Databases and big data for underwater systems control
  • Underwater modems

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Energy-Efficient Routing Protocol for Selecting Relay Nodes in Underwater Sensor Networks Based on Fuzzy Analytical Hierarchy Process
Sensors 2022, 22(22), 8930; https://doi.org/10.3390/s22228930 - 18 Nov 2022
Viewed by 501
Abstract
The use of underwater sensor networks (UWSNs) offers great advantages in many automatic observation services such as water monitoring (ocean, sea, etc.) and registering of geological events (landslides, earthquakes). However, UWSNs have many more limitations than terrestrial sensor networks (smaller bandwidth, higher delays, [...] Read more.
The use of underwater sensor networks (UWSNs) offers great advantages in many automatic observation services such as water monitoring (ocean, sea, etc.) and registering of geological events (landslides, earthquakes). However, UWSNs have many more limitations than terrestrial sensor networks (smaller bandwidth, higher delays, etc.) with new requirements such as low power consumption by nodes or being able to select appropriate routes in a dynamic topology due to water currents and movements. To cope with these problems, the use of a routing protocol is very important. In this paper we propose a routing technique that adapts to changes in the network topology, avoiding multiple retransmissions that would affect its overall performance. This protocol is energy-efficient and is implemented using a fuzzy analytical hierarchical process (FAHP) under multi-criteria decision making (MCDM) to make an intelligent routing decision based on objectives, criteria and alternatives. To select the next node on the route, several comparison matrices are used: number of hops, distances to the sink node, and number of neighbors. The results show that the proposed setup behaves similarly to other existing underwater sensor network routing schemes using fuzzy schemes such as SPRINT. Full article
(This article belongs to the Special Issue Underwater Sensors Network II)
Show Figures

Figure 1

Article
Spread Spectrum Modulation with Grassmannian Constellations for Mobile Multiple Access Underwater Acoustic Channels
Sensors 2022, 22(21), 8518; https://doi.org/10.3390/s22218518 - 05 Nov 2022
Viewed by 457
Abstract
The objective of this study is to evaluate Grassmannian constellations combined with a spread spectrum multiple access scheme for underwater acoustic mobile multiple access communication systems. These communication systems enable the coordination of a fleet of Autonomous Underwater Vehicles (AUVs) from a surface [...] Read more.
The objective of this study is to evaluate Grassmannian constellations combined with a spread spectrum multiple access scheme for underwater acoustic mobile multiple access communication systems. These communication systems enable the coordination of a fleet of Autonomous Underwater Vehicles (AUVs) from a surface or bottom control unit, e.g., a boat. Due to its robustness against phase rotation, the demodulator of Grassmannian constellations uses non-coherent detection, and the main advantage of such modulation lies in the spectrum efficiency gain with respect to conventional differential modulation. The communication system under study in this paper consists of (i), at the transmitter side, a Grassmannian modulation used in an orthogonal spread spectrum multiple access scheme called Multiuser Hyperbolic Frequency Modulation (MU-HFM) and (ii), at the receiver side, a non-coherent array decoder. The modulation and demodulation are presented as well as the considered spreading sequences. Finally, performances of the proposed transmission scheme are evaluated over replayed underwater acoustic channel responses collected at sea by a multi-sensor acoustic acquisition system. Full article
(This article belongs to the Special Issue Underwater Sensors Network II)
Show Figures

Figure 1

Article
A Novel Routing Protocol Based on Elliptical Shaped Movement of Autonomous Underwater Vehicles in Data Gathering Process for Underwater Wireless Sensor Network
Sensors 2022, 22(14), 5269; https://doi.org/10.3390/s22145269 - 14 Jul 2022
Cited by 3 | Viewed by 782
Abstract
High end-to-end delay is a significant challenge in the data collection process in the underwater environment. Autonomous Underwater Vehicles (AUVs) are a considerably reliable source of data collection if they have significant trajectory movement. Therefore, in this paper, a new routing algorithm known [...] Read more.
High end-to-end delay is a significant challenge in the data collection process in the underwater environment. Autonomous Underwater Vehicles (AUVs) are a considerably reliable source of data collection if they have significant trajectory movement. Therefore, in this paper, a new routing algorithm known as Elliptical Shaped Efficient Data Gathering (ESEDG) is introduced for the AUV movement. ESEDG is divided into two phases: first, an elliptical trajectory has been designed for the horizontal movement of the AUV. In the second phase, the AUV gathers data from Gateway Nodes (GNs) which are associated with Member Nodes (MNs). For their association, an end-to-end delay model is also presented in ESEDG. The hierarchy of data collection is as follows: MNs send data to GNs, the AUV receives data from GNs, and forwards it to the sink node. Furthermore, the ESEDG was evaluated on the network simulator NS-3 version 3.35, and the results were compared to existing data collection routing protocols DSG–DGA, AEEDCO, AEEDCO-A, ALP, SEDG, and AEDG. In terms of network throughput, end-to-end delay, lifetime, path loss, and energy consumption, the results showed that ESEDG outperformed the baseline routing protocols. Full article
(This article belongs to the Special Issue Underwater Sensors Network II)
Show Figures

Figure 1

Article
Ocean-Bottom Laser Seismograph
Sensors 2022, 22(7), 2527; https://doi.org/10.3390/s22072527 - 25 Mar 2022
Viewed by 859
Abstract
This paper describes an ocean-bottom laser seismograph, based on the modified laser meter of hydrosphere pressure variations, and designed to record vertical bottom displacements at the place of its location. Its measuring accuracy is about 1 nm, limited by the stability of the [...] Read more.
This paper describes an ocean-bottom laser seismograph, based on the modified laser meter of hydrosphere pressure variations, and designed to record vertical bottom displacements at the place of its location. Its measuring accuracy is about 1 nm, limited by the stability of the laser emission, which can be improved by using more advanced lasers. The purpose of this instrument is to measure the displacements of the seabed’s upper layer in the low-frequency sonic and infrasonic ranges. Theoretically, it can operate in the frequency range from 0 (conditionally) to 1000 Hz; the upper limit is determined by the operating speed of the digital registration system. We demonstrated the capabilities of the ocean-bottom laser seismograph while registering vertical bottom displacements caused by sea wind waves and lower frequency processes—seiches, i.e., eigenoscillations of the bay in which the instrument was installed. Comparison of experimental data of the bottom laser seismograph with the data of the laser hydrosphere pressure variations meter and the velocimeter—installed in close proximity—shows good efficiency of the instrument. Full article
(This article belongs to the Special Issue Underwater Sensors Network II)
Show Figures

Figure 1

Article
Deep Reinforcement Learning Based Optical and Acoustic Dual Channel Multiple Access in Heterogeneous Underwater Sensor Networks
Sensors 2022, 22(4), 1628; https://doi.org/10.3390/s22041628 - 18 Feb 2022
Cited by 2 | Viewed by 931
Abstract
In this paper, we investigate how to efficiently utilize channel bandwidth in heterogeneous hybrid optical and acoustic underwater sensor networks, where sensor nodes adopt different Media Access Control (MAC) protocols to transmit data packets to a common relay node on optical or acoustic [...] Read more.
In this paper, we investigate how to efficiently utilize channel bandwidth in heterogeneous hybrid optical and acoustic underwater sensor networks, where sensor nodes adopt different Media Access Control (MAC) protocols to transmit data packets to a common relay node on optical or acoustic channels. We propose a new MAC protocol based on deep reinforcement learning (DRL), referred to as optical and acoustic dual-channel deep-reinforcement learning multiple access (OA-DLMA), in which the sensor nodes utilizing the OA-DLMA protocol are called agents, and the remainder are non-agents. The agents can learn the transmission patterns of coexisting non-agents and find an optimal channel access strategy without any prior information. Moreover, in order to further enhance network performance, we develop a differentiated reward policy that rewards specific actions over optical and acoustic channels differently, with priority compensation being given to the optical channel to achieve greater data transmission. Furthermore, we have derived the optimal short-term sum throughput and channel utilization analytically and conducted extensive simulations to evaluate the OA-DLMA protocol. Simulation results show that our protocol performs with near-optimal performance and significantly outperforms other existing protocols in terms of short-term sum throughput and channel utilization. Full article
(This article belongs to the Special Issue Underwater Sensors Network II)
Show Figures

Figure 1

Back to TopTop