Advances in Balance and Gait Assessment, Monitoring and Rehabilitation in Multiple Sclerosis

A special issue of Sclerosis (ISSN 2813-3064).

Deadline for manuscript submissions: 10 December 2025 | Viewed by 314

Special Issue Editor


E-Mail Website
Guest Editor
Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Interests: mobility; balance; gait; aging; neurological disorders; neuroimaging; biomechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Postural control and gait dysfunction are prevalent in persons with multiple sclerosis. Given the importance of assessing, monitoring and improving balance and gait function in persons with multiple sclerosis, advances in these areas provide a significant opportunity for enhancing the quality of life of persons with multiple sclerosis.

This Special Issue, “Advances in Balance And Gait Assessment, Monitoring And Rehabilitation In Multiple Sclerosis”, invites original contributions that explore the use of novel tools or methods for the assessment of balance and gait function, covering a wide range of topics, including, but not limited to, the following:

  • Novel interventions targeting balance or gait in persons with multiple sclerosis;
  • Use of novel tools or methods for assessment of balance and gait function in persons with multiple sclerosis;
  • Novel algorithms and methods for processing, analyzing and interpreting balance or gait data in persons with multiple sclerosis.

Dr. Manuel E. Hernandez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sclerosis is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • multiple sclerosis
  • postural control
  • balance
  • gait
  • neuroscience
  • biomechanics
  • movement science
  • signal processing
  • machine learning
  • artificial intelligence

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 259 KiB  
Article
Beyond the Timed Up and Go: Dual-Task Gait Assessments Improve Fall Risk Detection and Reflect Real-World Mobility in Multiple Sclerosis
by Michael VanNostrand, Myeongjin Bae, Natalie Lloyd, Sadegh Khodabandeloo and Susan L. Kasser
Sclerosis 2025, 3(3), 22; https://doi.org/10.3390/sclerosis3030022 - 22 Jun 2025
Viewed by 104
Abstract
Background: Falls are common among individuals with multiple sclerosis (MS), yet standard clinical mobility assessments—such as the Timed Up and Go (TUG)—may not fully capture the complexities of real-world ambulation, leading to suboptimal fall identification. There is a critical need to evaluate the [...] Read more.
Background: Falls are common among individuals with multiple sclerosis (MS), yet standard clinical mobility assessments—such as the Timed Up and Go (TUG)—may not fully capture the complexities of real-world ambulation, leading to suboptimal fall identification. There is a critical need to evaluate the ecological validity of these assessments and identify alternative tests that better reflect real-world mobility and more accurately detect falls. This study examined the ecological validity of the TUG and novel dual-task clinical assessments by comparing laboratory-based gait metrics to community ambulation in individuals with MS and evaluated their ability to identify fallers. Methods: Twenty-seven individuals with MS (age 59.11 ± 10.57) completed the TUG test and three novel dual-task mobility assessments (TUG-extended, 25-foot walk and turn, and Figure 8 walk), each performed concurrently with a phonemic verbal fluency task. After lab assessments, the participants wore accelerometers for three consecutive days. Gait speed and stride regularity data was collected during both the in-lab clinical assessments and identified walking bouts in the community. The participants were stratified as fallers or non-fallers based on self-reported fall history over the previous six months. Findings: Significant differences were observed between the TUG and real-world ambulation for both gait speed (p < 0.01) and stride regularity (p = 0.04). No significant differences were found in gait metrics between real-world ambulation and both the 25-foot walk and turn and TUG-extended. Intraclass correlation coefficient analysis demonstrated good agreement between the 25-foot walk and turn and real-world ambulation for both gait speed (ICC = 0.75) and stride regularity (ICC = 0.81). When comparing the TUG to real-world ambulation, moderate agreement was observed for gait speed (ICC = 0.56) and poor agreement for stride regularity (ICC = 0.41). The 25-foot walk and turn exhibited superior predictive ability of fall status (AUC = 0.76) compared to the TUG (AUC = 0.67). Conclusions: The 25-foot walk and turn demonstrated strong ecological validity. It also exhibited superior predictive ability of fall status compared to the TUG. These findings support the 25-foot walk and turn as a promising tool for assessing mobility and fall risk in MS, warranting further study. Full article
Back to TopTop