Special Issue "Criticality of the Rare Earth Elements: Current and Future Sources and Recycling"

A special issue of Resources (ISSN 2079-9276).

Deadline for manuscript submissions: closed (30 June 2017).

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Guest Editor
Assist. Prof. Dr. Simon M. Jowitt Website 1 Website 2 E-Mail
Department of Geosciences, University of Nevada Las Vegas, 4505, S. Maryland Pkwy., Las Vegas, NV 89154-4010, USA
Interests: Economic Geology; Igneous Petrology; Global Metal and Mineral Resources; Geochemistry; Large Igneous Provinces; Mineral Exploration; the environmental impact of mining; wealth from waste and the use of mine waste as a resource; mineral economics

Special Issue Information

Dear Colleagues,

Rare earth elements (REE) are critical to our modern way of life; however, potential primary and secondary sources of these elements remain somewhat poorly understood. In particular, comparatively little research has been undertaken on the potential for recycling and reuse of these elements and the extraction of these critical elements from waste material. This Special Issue focuses on furthering our understanding of the criticality and potential sources of the rare earth elements, with a specific focus on secondary sources, including waste from mining and processing activities, the potential for extraction of the REE from high technology or electronic waste, and techniques for extracting the REE from unconventional sources. We also invite submissions that cover the positive and negative impact of these potential sources, as well as papers that present research on primary REE mineral deposits, mineral deposits that are prospective for the REE but either are not currently exploited or deport their contained REE to waste, and the potential for future REE production from hitherto unexploited REE-bearing mineral deposit types. The papers published in this Special Issue will provide further insight into the full life cycle of the REE, information that is vital to ensure sustainable sources of these critical elements into the future.

Dr. Simon Jowitt
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Resources is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • rare earth elements
  • critical metals
  • global mineral resources
  • recycling
  • substitution
  • life cycle assessment

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

Open AccessEditorial
Introduction to a Resources Special Issue on Criticality of the Rare Earth Elements: Current and Future Sources and Recycling
Resources 2018, 7(2), 35; https://doi.org/10.3390/resources7020035 - 26 May 2018
Abstract
The rare earth elements (REE) are vital to modern technologies and society and are amongst the most important of the critical elements. This special issue of Resources examines a number of facets of these critical elements, current and future sources of the REE, [...] Read more.
The rare earth elements (REE) are vital to modern technologies and society and are amongst the most important of the critical elements. This special issue of Resources examines a number of facets of these critical elements, current and future sources of the REE, the mineralogy of the REE, and the economics of the REE sector. These papers not only provide insights into a wide variety of aspects of the REE, but also highlight the number of different areas of research that need to be undertaken to ensure sustainable and secure supplies of these critical metals into the future. Full article

Research

Jump to: Editorial, Review

Open AccessFeature PaperArticle
Rare Earth Elements (REE) Deposits Associated with Great Plain Margin Deposits (Alkaline-Related), Southwestern United States and Eastern Mexico
Resources 2018, 7(1), 8; https://doi.org/10.3390/resources7010008 - 23 Jan 2018
Cited by 3
Abstract
W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these [...] Read more.
W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these rocks contain relatively large quantities of important commodities such as, gold, fluorine, zirconium, rare earth elements (REE), tellurium, gallium, and other critical elements. In New Mexico, these deposits were called Great Plain Margin (GPM) deposits, because this north-south belt of alkaline-igneous rocks roughly coincides with crustal thickening along the margin between the Great Plains physiographic province with the Basin and Range (including the Rio Grande rift) and Rocky Mountains physiographic provinces, which extends into Trans-Pecos Texas and eastern Mexico. Since 1996, only minor exploration and development of these deposits in New Mexico, Texas, and eastern Mexico has occurred because of low commodity prices, permitting issues, and environmental concerns. However, as the current demand for gold and critical elements, such as REE and tellurium has increased, new exploration programs have encouraged additional research on the geology of these deposits. The lack of abundant quartz in these systems results in these deposits being less resistant to erosion, being covered, and not as well exposed as other types of quartz-rich deposits, therefore additional undiscovered alkaline-related gold and REE deposits are likely in these areas. Deposits of Th-REE-fluorite (±U, Nb) epithermal veins and breccias are found in the several GPM districts, but typically do not contain significant gold, although trace amounts of gold are found in most GPM districts. Gold-rich deposits in these districts tend to have moderate to low REE and anomalously high tungsten and sporadic amounts of tellurium. Carbonatites are only found in New Mexico and Mexico. The diversity of igneous rocks, including alkaline-igneous rocks, and associated mineral deposits along this boundary suggests that this region is characterized by highly fractionated and differentiated, multiple pulses of mantle-derived magmas evolving to lower crustal magmas related to the subduction of the Farallon plate. The differences in incompatible trace elements, including REE and beryllium, between the different granitic to rhyolite rocks are likely related to either differences in the crustal rocks that were assimilated during magmatic differentiation or by potential minor contamination from crustal sources and/or magma mixing. Deep-seated fracture systems or crustal lineaments apparently channeled the magmas and hydrothermal fluids. Once magmas and metal-rich fluids reached shallow levels, the distribution and style of these intrusions, as well as the resulting associated mineral deposits were controlled by local structures and associated igneous rock compositions. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Governance and Risk–Value Constructions in Closing Loops of Rare Earth Elements in Global Value Chains
Resources 2017, 6(4), 59; https://doi.org/10.3390/resources6040059 - 24 Oct 2017
Cited by 3
Abstract
This article addresses a research gap on the challenges—specifically risk and value—connected to realizing the potential for closing loops for rare earth elements (REE). We develop an analytical framework from conceptual elements of the global value chain (GVC) framework and the relational theory [...] Read more.
This article addresses a research gap on the challenges—specifically risk and value—connected to realizing the potential for closing loops for rare earth elements (REE). We develop an analytical framework from conceptual elements of the global value chain (GVC) framework and the relational theory of risk to examine several empirical REE industry cases for loop closure. The aim of the paper is to identify how risk–value relationships are constructed by different actors as governance structures form in transactions prior to price setting and how these have impacts on the closure of REE loops. Often, REE loops are not closed, and we find that constructions of the risk–value relationship by industrial actors and by government agencies are unstable as they pursue different motivations, consequently hindering REE loop closure in GVCs. In light of this, we propose that governments mediate against the construction of risk–value relationships by facilitating information on the characteristics of end-of-life materials that qualify these for re-entry into loops. Full article
Show Figures

Figure 1

Open AccessArticle
Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond
Resources 2017, 6(3), 40; https://doi.org/10.3390/resources6030040 - 23 Aug 2017
Cited by 3
Abstract
The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have <2500 years of reserves left, based on current demand, mining operations, and technologies. With an increasing [...] Read more.
The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have <2500 years of reserves left, based on current demand, mining operations, and technologies. With an increasing population, exploration of potential extraterrestrial REE resources is inevitable, with the Earth’s Moon being a logical first target. Following lunar differentiation at ~4.50–4.45 Ga, a late-stage (after ~99% solidification) residual liquid enriched in Potassium (K), Rare-earth elements (REE), and Phosphorus (P), (or “KREEP”) formed. Today, the KREEP-rich region underlies the Oceanus Procellarum and Imbrium Basin region on the lunar near-side (the Procellarum KREEP Terrain, PKT) and has been tentatively estimated at preserving 2.2 × 108 km3 of KREEP-rich lithologies. The majority of lunar samples (Apollo, Luna, or meteoritic samples) contain REE-bearing minerals as trace phases, e.g., apatite and/or merrillite, with merrillite potentially contributing up to 3% of the PKT. Other lunar REE-bearing lunar phases include monazite, yittrobetafite (up to 94,500 ppm yttrium), and tranquillityite (up to 4.6 wt % yttrium, up to 0.25 wt % neodymium), however, lunar sample REE abundances are low compared to terrestrial ores. At present, there is no geological, mineralogical, or chemical evidence to support REEs being present on the Moon in concentrations that would permit their classification as ores. However, the PKT region has not yet been mapped at high resolution, and certainly has the potential to yield higher REE concentrations at local scales (<10s of kms). Future lunar exploration and mapping efforts may therefore reveal new REE deposits. Beyond the Moon, Mars and other extraterrestrial materials are host to REEs in apatite, chevkinite-perrierite, merrillite, whitlockite, and xenotime. These phases are relatively minor components of the meteorites studied to date, constituting <0.6% of the total sample. Nonetheless, they dominate a samples REE budget with their abundances typically 1–2 orders of magnitude enriched relative to their host rock. As with the Moon, though phases which host REEs have been identified, no extraterrestrial REE resource, or ore, has been identified yet. At present extraterrestrial materials are therefore not suitable REE-mining targets. However, they are host to other resources that will likely be fundamental to the future of space exploration and support the development of in situ resource utilization, for example: metals (Fe, Al, Mg, PGEs) and water. Full article
Show Figures

Figure 1

Open AccessArticle
On the Extraction of Rare Earth Elements from Geothermal Brines
Resources 2017, 6(3), 39; https://doi.org/10.3390/resources6030039 - 18 Aug 2017
Cited by 5
Abstract
The availability of rare earth elements from primary resources has come into question in the last two decades. This has sparked various government and industry initiatives to examine potential rare earth element resources apart from virgin ore bodies. Geothermal fluids are potentially significant [...] Read more.
The availability of rare earth elements from primary resources has come into question in the last two decades. This has sparked various government and industry initiatives to examine potential rare earth element resources apart from virgin ore bodies. Geothermal fluids are potentially significant sources of valuable minerals and metals, while co-recovery with geothermal energy production would be an attractive sustainable system. In this work, we give a brief survey of data collected on rare earth element concentrations in geothermal fluids. A survey of methods and technologies for extracting rare earth elements from geothermal is discussed along with the feasibility of recovering rare earth elements from geothermal brines. Based on the findings of this study, rare earth element extraction from geothermal fluids is technically possible, but neither economically viable nor strategically significant at this time. Full article
Show Figures

Figure 1

Open AccessArticle
Speculations Linking Monazite Compositions to Origin: Llallagua Tin Ore Deposit (Bolivia)
Resources 2017, 6(3), 36; https://doi.org/10.3390/resources6030036 - 29 Jul 2017
Cited by 2
Abstract
Monazite [(Ce,Th)PO4] from the Llallagua tin ore deposit in Bolivia is characterized by low radiogenic element contents. Previously reported field evidence and mineral associations suggest the mineral formed via direct precipitation from hydrothermal fluids. Monazite compositions thus may provide insight into [...] Read more.
Monazite [(Ce,Th)PO4] from the Llallagua tin ore deposit in Bolivia is characterized by low radiogenic element contents. Previously reported field evidence and mineral associations suggest the mineral formed via direct precipitation from hydrothermal fluids. Monazite compositions thus may provide insight into characteristics of the fluids from which it formed. Chemical compositions of three Llallagua monazite grains were obtained using Electron Probe Microanalysis (EPMA), n = 64] and laser ablation mass spectrometer (LA-ICP-MS, n = 56). The mineral has higher amounts of U (123 ± 17 ppm) than Th (39 ± 20 ppm) (LA-ICP-MS, ±1σ). Grains have the highest amounts of fluorine ever reported for monazite (0.88 ± 0.10 wt %, EPMA, ±1σ), and F-rich fluids are effective mobilizers of rare earth elements (REEs), Y, and Th. The monazite has high Eu contents and positive Eu anomalies, consistent with formation in a highly-reducing back-arc environment. We speculate that F, Ca, Si and REE may have been supplied via dissolution of pre-existing fluorapatite. Llallagua monazite oscillatory zoning is controlled by an interplay of low (P + Ca + Si + Y) and high atomic number (REE) elements. We suggest monazite compositions provide insight into fluid geochemistry, mineral reactions, and tectonic settings of ore deposits that contain the mineral. Full article
Show Figures

Graphical abstract

Review

Jump to: Editorial, Research

Open AccessReview
Geochemistry of Monazite within Carbonatite Related REE Deposits
Resources 2017, 6(4), 51; https://doi.org/10.3390/resources6040051 - 27 Sep 2017
Cited by 7
Abstract
Approximately >50% of global rare earth element (REE) resources are hosted by carbonatite related deposits, of which monazite is one of the most important REE minerals. Monazite dominates more than 30 carbonatite-related REE deposits around the world, including currently exploited mineralization at Bayan [...] Read more.
Approximately >50% of global rare earth element (REE) resources are hosted by carbonatite related deposits, of which monazite is one of the most important REE minerals. Monazite dominates more than 30 carbonatite-related REE deposits around the world, including currently exploited mineralization at Bayan Obo and Mount Weld. These deposits are widely distributed across all continents, except Antarctica. Though rare, monazite occurs as the primary mineral in carbonatite, and mostly presents as a secondary mineral that has a strong association with apatite. It can partially or completely replace thin or thick overgrowth apatite, depending on the availability of REE. Other mineral phases that usually crystallize together with monazite include barite, fluorite, xenotime, sulfide, and quartz in a carbonate matrix (e.g., dolomite, calcite). This review of monazite geochemistry within carbonatite-related REE deposits aims to provide information regarding the use of monazite as a geochemical indicator to track the formation history of the REE deposits and also supply additional information for the beneficiation of monazite. The chemical compositions of monazite are highly variable, and Ce-monazite is the dominant solid solution in carbonatite related deposits. Most monazite displays steep fractionation from La to Lu, absent of either Eu or Ce anomalies in the chondrite normalized REE plot. The other significant components are huttonite and cheratite. Some rare sulfur-bearing monazite is also identified with an SO3 content up to 4 wt %. A 147Sm/144Nd ratio with an average ~0.071 for monazite within carbonatite-related ores is similar to that of their host rocks (~0.065), and is the lowest among all types of REE deposits. Sm/Nd variation of monazite from a single complex reflects the differentiation stage of magma, which decreases from early to late. Based on the differences of Nd and Sr abundances, Nd isotopic composition for monazite can be used to track the magma source, whereas Sr isotopic composition records the signatures of the fluid source. Th-(U)-Pb age determination of the secondary monazite records variable thermal or metasomatic disturbances, and careful geochronological interpretation should be brought forward combined with other lines of evidence. ThO2 is the most difficult contamination in the beneficiation of monazite, luckily, the ThO2 content of monazite within carbonatite is generally low (<2 wt %). Full article
Show Figures

Figure 1

Open AccessReview
Rare Earth Element Deposits of Alkaline Igneous Rocks
Resources 2017, 6(3), 34; https://doi.org/10.3390/resources6030034 - 25 Jul 2017
Cited by 9
Abstract
Alkaline igneous complexes host deposits of rare earth elements (REE), which represent one of the most economically important resources of heavy REE and Yttrium (Y). The hosts are differentiated rocks ranging from nepheline syenites and trachytes to peralkaline granites. These complexes usually occur [...] Read more.
Alkaline igneous complexes host deposits of rare earth elements (REE), which represent one of the most economically important resources of heavy REE and Yttrium (Y). The hosts are differentiated rocks ranging from nepheline syenites and trachytes to peralkaline granites. These complexes usually occur in continental within-plate tectonic settings associated with rifts, faults, or hotspot magmatism. The REE mineralization is found in layered alkaline complexes, granitic stocks, and late-stages dikes and rarely trachytic volcanic and volcaniclastic deposits. The bulk of REE is present in accessory minerals, which can reach percentage levels in mineralized zones. The mineralization contains various REE-bearing minerals that can display complex replacement textures. Main REE minerals present in these deposits are bastnäsite, eudialyte, loparite, gittinsite, xenotime, monazite, zircon, and fergusonite. The parent magmas of alkaline igneous complexes are derived from partial melts of mantle sources. Protracted fractional crystallization of the magma led to an enrichment in REE, particularly in the late stages of magma evolution. The primary magmatic mineralization is commonly overprinted (remobilized and enriched) by late magmatic to hydrothermal fluids. Elevated abundances of U and Th in the deposits make a gamma-ray (radiometric) survey an important exploration tool, but also represent a significant environmental challenge for exploitation. Full article
Show Figures

Figure 1

Back to TopTop