Medical Application of Polymer-Based Composites II

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 30729

Special Issue Editor


E-Mail Website
Guest Editor
School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
Interests: biomaterials; optomechanronics; dental biomechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer composites have been used for various applications in the aerospace, automotive, marine, military, and sport industries. Recently, polymer-based composites have received attention in the medical field for fabricating bioactive, resorbable, and cell-growth-promoting components for usage in tissue engineering, wound dressing, drug releasing, dental resin-based composites, and surgical implantation. With this in mind, we are organizing a Special Issue on the recent developments and spotlight benefits of various types of polymer composite and fabrication technologies. This Special Issue is open to any subject related to the impacts of the development and research on the medical applications of polymer-based composites.

Prof. Dr. Haw-Ming Huang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composites
  • biomaterial
  • tissue engineering
  • biodegradable implants
  • dental resin-based composites
  • wound dressing composites
  • drug-releasing composites

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 3312 KiB  
Article
Rehardening and the Protective Effect of Gamma-Polyglutamic Acid/Nano-Hydroxyapatite Paste on Surface-Etched Enamel
by Nai-Chia Teng, Aditi Pandey, Wei-Hsin Hsu, Ching-Shuan Huang, Wei-Fang Lee, Tzu-Hsin Lee, Thomas Chung-Kuang Yang, Tzu-Sen Yang and Jen-Chang Yang
Polymers 2021, 13(23), 4268; https://doi.org/10.3390/polym13234268 - 06 Dec 2021
Cited by 4 | Viewed by 2521
Abstract
Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research [...] Read more.
Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research reports a dramatic enhancement in the rehardening potential of surface-etched enamels through a plausible synergistic effect of the novel combination of γ-polyglutamic acid (γ-PGA) and nano-hydroxyapatite (nano-HAp) paste, within the limitations of the study. The percentage of recovery of the surface microhardness (SMHR%) and the surface parameters for 9 wt% γ-PGA/nano-HAp paste on acid-etched enamel were investigated with a Vickers microhardness tester and an atomic force microscope, respectively. This in vitro study demonstrates that γ-PGA/nano-HAp treatment could increase the SMHR% of etched enamel to 39.59 ± 6.69% in 30 min. To test the hypothesis of the rehardening mechanism and the preventive effect of the γ-PGA/nano-HAp paste, the surface parameters of mean peak spacing (Rsm) and mean arithmetic surface roughness (Ra) were both measured and compared to the specimens subjected to demineralization and/or remineralization. After the treatment of γ-PGA/nano-HAp on the etched surface, the reduction in Rsm from 999 ± 120 nm to 700 ± 80 nm suggests the possible mechanism of void-filling within a short treatment time of 10 min. Furthermore, ΔRa-I, the roughness change due to etching before remineralization, was 23.15 ± 3.23 nm, while ΔRa-II, the roughness change after remineralization, was 11.99 ± 3.90 nm. This statistically significant reduction in roughness change (p < 0.05) implies a protective effect against the demineralization process. The as-developed novel γ-PGA/nano-HAp paste possesses a high efficacy towards tooth microhardness rehardening, and a protective effect against acid etching. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Figure 1

13 pages, 2219 KiB  
Article
Synthesis and Characterization of a New Nanocomposite Film Based on Polyvinyl Alcohol Polymer and Nitro Blue Tetrazolium Dye as a Low Radiation Dosimeter in Medical Diagnostics Application
by Saleh Alashrah, Yassine El-Ghoul and Mohammed Ahmed Ali Omer
Polymers 2021, 13(11), 1815; https://doi.org/10.3390/polym13111815 - 31 May 2021
Cited by 7 | Viewed by 2539
Abstract
Dosimetry is a field of increasing importance in diagnostic radiology. There has been a realization among healthcare professionals that the dose of radiation received by patients via modern medical X-ray examinations could induce acute damage to the skin and eyes. The present study [...] Read more.
Dosimetry is a field of increasing importance in diagnostic radiology. There has been a realization among healthcare professionals that the dose of radiation received by patients via modern medical X-ray examinations could induce acute damage to the skin and eyes. The present study highlights the synthesis of polyvinyl alcohol/nitro blue tetrazolium nanocomposite films (PVA/NBT) for radiation detection depending on chromic, optical, chemical and morphologic changes. First, we synthesized the nanocomposite film-based PVA doped with NBT and the different parameters of the preparation procedure were optimized. Then The films were exposed to different low X-ray doses on the scale of mGy level (0, 2, 4, 10 and 20 mGy). The sensitivity and the performance of the made composite films were evaluated via different characterization methods. Indeed, the response curve based on UV-Vis absorptions revealed a linear increase in absorbance with increased radiation doses (R = 0.998). FTIR analysis showed a clear chemical modification in recorded spectra after irradiation. X-ray diffraction assessment revealed clear structural changes in crystallinity after ionization treatment. SEM analysis showed a clear morphological modification of PVA/NBT films after irradiation. In addition, the prepared PVA/NBT films exhibited excellent pre- and post-irradiation stability in dark and light. Finally, the quantitative colorimetry study confirmed the performance of the prepared films and the different colorimetric coordinates, the total color difference (∆E) and the color strength (K/S) showed a linear increase with increasing X-ray doses. The made nanocomposite PVA/NBT film might offer promising potential for an effective highly sensitive medical dosimeter applied for very low doses in X-ray diagnostic radiology. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

11 pages, 3005 KiB  
Article
Estimation of the Effect of Accelerating New Bone Formation of High and Low Molecular Weight Hyaluronic Acid Hybrid: An Animal Study
by Po-Jan Kuo, Hsiu-Ju Yen, Chi-Yu Lin, Hsuan-Yu Lai, Chun-Hung Chen, Shwu-Huey Wang, Wei-Jen Chang, Sheng-Yang Lee and Haw-Ming Huang
Polymers 2021, 13(11), 1708; https://doi.org/10.3390/polym13111708 - 24 May 2021
Cited by 8 | Viewed by 2249
Abstract
Osteoconduction is an important consideration for fabricating bio-active materials for bone regeneration. For years, hydroxyapatite and β-calcium triphosphate (β-TCP) have been used to develop bone grafts for treating bone defects. However, this material can be difficult to handle due to filling material sagging. [...] Read more.
Osteoconduction is an important consideration for fabricating bio-active materials for bone regeneration. For years, hydroxyapatite and β-calcium triphosphate (β-TCP) have been used to develop bone grafts for treating bone defects. However, this material can be difficult to handle due to filling material sagging. High molecular weight hyaluronic acid (H-HA) can be used as a carrier to address this problem and improve operability. However, the effect of H-HA on bone formation is still controversial. In this study, low molecular weight hyaluronic acid (L-HA) was fabricated using gamma-ray irradiation. The viscoelastic properties and chemical structure of the fabricated hybrids were evaluated by a rheological analysis nuclear magnetic resonance (NMR) spectrum. The L-MH was mixed with H-HA to produce H-HA/L-HA hybrids at ratios of 80:20, 50:50 and 20:80 (w/w). These HA hybrids were then combined with hydroxyapatite and β-TCP to create a novel bone graft composite. For animal study, artificial bone defects were prepared in rabbit femurs. After 12 weeks of healing, the rabbits were scarified, and the healing statuses were observed and evaluated through micro-computer tomography (CT) and tissue histological images. Our viscoelastic analysis showed that an HA hybrid consisting 20% H-HA is sufficient to maintain elasticity; however, the addition of L-HA dramatically decreases the dynamic viscosity of the HA hybrid. Micro-CT images showed that the new bone formations in the rabbit femur defect model treated with 50% and 80% L-HA were 1.47 (p < 0.05) and 2.26 (p < 0.01) times higher than samples filled with HA free bone graft. In addition, a similar tendency was observed in the results of HE staining. These results lead us to suggest that the material with an H-HA/L-HA ratio of 50:50 exhibited acceptable viscosity and significant new bone formation. Thus, it is reasonable to suggest that it may be a potential candidate to serve as a supporting system for improving the operability of granular bone grafts and enhancing new bone formations. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

22 pages, 3904 KiB  
Article
Development and In Vitro Evaluation of 2-Methoxyestradiol Loaded Polymeric Micelles for Enhancing Anticancer Activities in Prostate Cancer
by Nabil A. Alhakamy, Osama A. A. Ahmed, Usama A. Fahmy and Shadab Md
Polymers 2021, 13(6), 884; https://doi.org/10.3390/polym13060884 - 13 Mar 2021
Cited by 26 | Viewed by 2154
Abstract
The present study aimed to formulate and optimize 2ME-loaded PMs (2ME-PMs) for enhancing the anticancer activity of 2ME in prostate cancer (PC). The 2ME-PMs were formulated using PEG-PLGA (PL), Tween 80 (TW80), and alpha-lipoic acid (ALA). The optimization was carried out using a [...] Read more.
The present study aimed to formulate and optimize 2ME-loaded PMs (2ME-PMs) for enhancing the anticancer activity of 2ME in prostate cancer (PC). The 2ME-PMs were formulated using PEG-PLGA (PL), Tween 80 (TW80), and alpha-lipoic acid (ALA). The optimization was carried out using a Box-Behnken design with the PL, TW80, and ALA as the independent variables and particle size (PS) as the response. The formulation was optimized for the lowest possible PS, and the software suggested optimum formula with 100.282 mg, 2%, and 40 mg for PL, TW80, and ALA, respectively. The optimized PMs had spherical morphology with PS of 65.36 ± 2.2 nm, polydispersity index (PDI) of 0.273 ± 0.03, and entrapment efficiency of 65.23 ± 3.5%. The in vitro drug release was 76.3 ± 3.2% after 24 h. The cell line studies using PC-3 cells showed IC50 values of 18.75 and 54.41 µmol for 2ME-PM and 2ME, respectively. The estimation of tumor biomarkers was also carried out. The tumor biomarkers caspase-9 (17.38 ± 1.42 ng/mL), tumor protein P53 (p53) (1050.0 ± 40.9 pg/mL), nitric oxide (NO) (0.693 ± 0.03 pg/mL), interleukin-1β (IL-1β) (25.84 ± 2.23 pg/mL), nuclear factor kappa B (NF-kB) (0.719 ± 0.07 pg/mL), interleukin-6 (IL-6) (2.53 ± 0.16 folds), and cyclooxygenase-2 (COX-2) (3.04 ± 0.5 folds) were determined for 2ME-PMs and the results showed that these values changed significantly compared to those of 2ME. Overall, the results showed that the formulation of 2ME to 2ME-PMs enhances the anticancer effect. The exploration of the combined advantages of PEG, PLGA, ALA, and PMs in cancer therapy and the delivery of 2ME is the major importance of this research work. PEG reduces the elimination of 2ME, PLGA enhances 2ME loading, ALA has an inherent apoptotic effect, and PMs can efficiently target tumor cells. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

12 pages, 26508 KiB  
Article
Enhancing the Antifungal Activity of Griseofulvin by Incorporation a Green Biopolymer-Based Nanocomposite
by Amr Shehabeldine, Hany El-Hamshary, Mohamed Hasanin, Ayman El-Faham and Mosaed Al-Sahly
Polymers 2021, 13(4), 542; https://doi.org/10.3390/polym13040542 - 12 Feb 2021
Cited by 40 | Viewed by 2711
Abstract
Fungal biofilms have caused several medical problems, resulting in significant morbidity and mortality as well as poor response to antifungal drugs. The current study was designed to evaluate the enhancement of antifungal and anti-biofilm activity of Griseofulvin-loaded green nanocomposite-based biopolymers (Ge-Nco) of glycogen [...] Read more.
Fungal biofilms have caused several medical problems, resulting in significant morbidity and mortality as well as poor response to antifungal drugs. The current study was designed to evaluate the enhancement of antifungal and anti-biofilm activity of Griseofulvin-loaded green nanocomposite-based biopolymers (Ge-Nco) of glycogen and gelatin against different strains of pathogenic Candida species. The prepared Ge-Nco was characterized using Fourier-transform infrared (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and transmission electron microscope (TEM). In addition, the morphology of the mature biofilm and the inhibition of biofilm was monitored and visualized using confocal laser scanning microscopy (CLSM). The minimal inhibitory concentrations (MIC) and (IC50) of Griseofulvin alone and the prepared Ge-Nco against three different strains of Candida sp. were determined according to Clinical and Laboratory Standards Institute (CLSI) method. The effects of Griseofulvin alone and Ge-Nco on the tested Candida sp. biofilm formation were determined by the crystal-violet staining protocol. The biofilm inhibition potential of Ge-Nco against the tested Candida sp. was detected and depicted under CLSM (2.5 D view). The findings depicted that Ge-Nco was prepared in nanometer size (10–23 nm). The observed minimum inhibitory concentration (MIC) of Griseofulvin alone and Ge-Nco against three different Candida sp. were found to be in range 49.9–99.8 μg/mL and 6.24–12.48 μg/mL, respectively. These results provide evidence for implementing efficient antivirulence approaches against three different Candida sp. that would be less likely to foster the emergence of resistance. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

9 pages, 1797 KiB  
Article
Dielectric Thermal Smart Glass Based on Tunable Helical Polymer-Based Superstructure for Biosensor with Antibacterial Property
by Haw-Ming Huang, Fu-Lun Chen, Ping-Yuan Lin and Yu-Cheng Hsiao
Polymers 2021, 13(2), 245; https://doi.org/10.3390/polym13020245 - 13 Jan 2021
Cited by 5 | Viewed by 1907
Abstract
A dielectric thermal smart glass (DTSG) based on the dielectric heating optical (DHO) effect in tunable helical polymer-based superstructures—cholesteric liquid crystals (CLCs)—was exhibited in this study. Field-induced dielectric heating can strongly affect the orientation of liquid crystals and change its optical properties. The [...] Read more.
A dielectric thermal smart glass (DTSG) based on the dielectric heating optical (DHO) effect in tunable helical polymer-based superstructures—cholesteric liquid crystals (CLCs)—was exhibited in this study. Field-induced dielectric heating can strongly affect the orientation of liquid crystals and change its optical properties. The purpose of this research focuses on dual-frequency CLC materials characterized by their specific properties on dielectric relaxation and demonstrates their potential for antibacterial biosensor applications. The developed DTSG is driven by voltages with modulated frequencies. The principal of DTSG in transparent states are a planar (P) state and a heated planar (HP) state reflecting infrared light, operated with the voltage at low and high frequencies, respectively. The scattering states are a focal conic (FC) state and a heated FC (HFC) state, with an applied frequency near the crossover frequency. The biomolecule detection of the antibacterial property was also demonstrated. The detection limitation of the DTSG biosensor was found to be about 0.5 µg/mL. The DTSG material has many potential industrial applications, such as in buildings, photonic devices, and biosensor applications. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Figure 1

16 pages, 4683 KiB  
Article
Aragonite-Polylysine: Neuro-Regenerative Scaffolds with Diverse Effects on Astrogliosis
by Tzachy Morad, Roni Mina Hendler, Eyal Canji, Orly Eva Weiss, Guy Sion, Refael Minnes, Ania Hava Grushchenko Polaq, Ido Merfeld, Zvy Dubinsky, Elimelech Nesher and Danny Baranes
Polymers 2020, 12(12), 2850; https://doi.org/10.3390/polym12122850 - 29 Nov 2020
Cited by 2 | Viewed by 2223
Abstract
Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons [...] Read more.
Biomaterials, especially when coated with adhesive polymers, are a key tool for restorative medicine, being biocompatible and supportive for cell adherence, growth, and function. Aragonite skeletons of corals are biomaterials that support survival and growth of a range of cell types, including neurons and glia. However, it is not known if this scaffold affects neural cell migration or elongation of neuronal and astrocytic processes, prerequisites for initiating repair of damage in the nervous system. To address this, hippocampal cells were aggregated into neurospheres and cultivated on aragonite skeleton of the coral Trachyphyllia geoffroyi (Coral Skeleton (CS)), on naturally occurring aragonite (Geological Aragonite (GA)), and on glass, all pre-coated with the oligomer poly-D-lysine (PDL). The two aragonite matrices promoted equally strong cell migration (4.8 and 4.3-fold above glass-PDL, respectively) and axonal sprouting (1.96 and 1.95-fold above glass-PDL, respectively). However, CS-PDL had a stronger effect than GA-PDL on the promotion of astrocytic processes elongation (1.7 vs. 1.2-fold above glass-PDL, respectively) and expression of the glial fibrillary acidic protein (3.8 vs. and 1.8-fold above glass-PDL, respectively). These differences are likely to emerge from a reaction of astrocytes to the degree of roughness of the surface of the scaffold, which is higher on CS than on GA. Hence, CS-PDL and GA-PDL are scaffolds of strong capacity to derive neural cell movements and growth required for regeneration, while controlling the extent of astrocytic involvement. As such, implants of PDL-aragonites have significant potential as tools for damage repair and the reduction of scar formation in the brain following trauma or disease. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

10 pages, 3406 KiB  
Article
Color-Indicating, Label-Free, Dye-Doped Liquid Crystal Organic-Polymer-Based-Bioinspired Sensor for Biomolecule Immunodetection
by Haw-Ming Huang, Er-Yuan Chuang, Fu-Lun Chen, Jia-De Lin and Yu-Cheng Hsiao
Polymers 2020, 12(10), 2294; https://doi.org/10.3390/polym12102294 - 07 Oct 2020
Cited by 8 | Viewed by 2296
Abstract
The highly sensitive interfacial effects between liquid crystal (LC) and alignment layers make LC-bioinspired sensors an important technology. However, LC-bioinspired sensors are limited by quantification requiring a polarized microscope and expensive equipment, which makes it difficult to commercialize LC-bioinspired sensors. In this report, [...] Read more.
The highly sensitive interfacial effects between liquid crystal (LC) and alignment layers make LC-bioinspired sensors an important technology. However, LC-bioinspired sensors are limited by quantification requiring a polarized microscope and expensive equipment, which makes it difficult to commercialize LC-bioinspired sensors. In this report, we first demonstrate that dye-doped LC (DDLC) chips coated with vertically aligned layers can be employed as a new LC-bioinspired sensing technology. The DDLC-bioinspired sensor was tested by detecting bovine serum albumin (BSA) and immunocomplexes of BSA pairs. The intensities of the dye color of the DDLC-bioinspired sensor can be changed with the concentrations of biomolecules and immunocomplexes. A detection limit of 0.5 µg/mL was shown for the color-indicating DDLC-bioinspired sensors. We also designed a new method to use the quantitative DDLC-bioinspired sensor with a smart-phone for potential of home test. The novel DDLC-bioinspired sensor is cheap, label-free, and easy to use, furthering the technology for home and field-based disease-related detection. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

Review

Jump to: Research

32 pages, 27590 KiB  
Review
Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications
by Artyom Pryadko, Maria A. Surmeneva and Roman A. Surmenev
Polymers 2021, 13(11), 1738; https://doi.org/10.3390/polym13111738 - 26 May 2021
Cited by 46 | Viewed by 5790
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth [...] Read more.
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Graphical abstract

16 pages, 2478 KiB  
Review
Utilizing Light Cure Units: A Concise Narrative Review
by Fatin A. Hasanain and Hani M. Nassar
Polymers 2021, 13(10), 1596; https://doi.org/10.3390/polym13101596 - 15 May 2021
Cited by 5 | Viewed by 5363
Abstract
The use of photo-curable resin composite restorations is an essential treatment modality in modern dental practice. The success and longevity of these restorations depend on achieving predictable and effective polymerization. Understanding the dynamics of the polymerization and the effect of light cure units [...] Read more.
The use of photo-curable resin composite restorations is an essential treatment modality in modern dental practice. The success and longevity of these restorations depend on achieving predictable and effective polymerization. Understanding the dynamics of the polymerization and the effect of light cure units (LCUs) on this process is paramount. The goal of this concise narrative review is to provide a simplified presentation of basic principles of composite chemistry, polymerization reactions, and photo-curing with relevant terminologies. Clinical guidelines for choosing and maintaining LCUs, as well as safety precautions and factors under the control of the clinician are listed. Finally, clinical recommendations of LCUs’ usage and monitoring are included to aid practitioners in achieving predictable polymerization during the placement of direct resin composite restorations. Full article
(This article belongs to the Special Issue Medical Application of Polymer-Based Composites II)
Show Figures

Figure 1

Back to TopTop