Polysaccharides and Polyacrylamide as Linear Polymeric Stabilizers for Zwitterionic Short-Chain Fluorocarbon Surfactant: Interfacial Properties, Apparent Viscosity, and Foam Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Foam Solution
2.3. Measurements and Characterization
2.3.1. Surface and Interfacial Activities Test
2.3.2. Apparent Viscosity Test
2.3.3. Foam Morphology Evolution Test
2.3.4. Foam Drainage Property Test
3. Results and Discussion
3.1. Effect of Polymeric Stabilizers on the Interfacial Properties of Foam Solution
3.2. Effect of Polymeric Stabilizers on the Apparent Viscosity of Foam Solution
3.3. Effect of Polymeric Stabilizers on the Foam Evolution of Foam Solution
3.4. Effect of Polymeric Stabilizers on the Drainage Property of Foam Solution
3.5. Mechanism of Polymeric Stabilizers on Foam Solution Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lou, M.; Jia, H.; Lin, Z.; Zeng, D.; Huo, J. Study on Fire Extinguishing Performance of Different Foam Extinguishing Agents in Diesel Pool Fire. Results Eng. 2023, 17, 100874. [Google Scholar] [CrossRef]
- Pan, W.; Zhang, M.; Gao, X.; Mo, S. Establishment of Aqueous Film Forming Foam Extinguishing Agent Minimum Supply Intensity Model Based on Experimental Method. J. Loss Prev. Process Ind. 2020, 63, 103997. [Google Scholar] [CrossRef]
- Xu, Z.; Guo, X.; Yan, L.; Kang, W. Fire-Extinguishing Performance and Mechanism of Aqueous Film-Forming Foam in Diesel Pool Fire. Case Stud. Therm. Eng. 2020, 17, 100578. [Google Scholar] [CrossRef]
- Ateş, A.; Qiao, R.; Lattimer, B.Y. Fuel Resistance of Firefighting Surfactant Foam Formulations. Fire 2025, 8, 44. [Google Scholar] [CrossRef]
- Alexander, I.; Barth, T.; Harder, C.; Holton, A.; Schmehling, E.; Thomsen, G.; Lyford, A.; Spiese, R.; Kim, J.; Ryan, P. Transport and Transformation of PFASs in an Aqueous Film-Forming Foam-Impacted Fractured Rock Aquifer. ACS ES&T Water 2025, 5, 3089–3099. [Google Scholar]
- Mauge-Lewis, K.A.; Ramaiahgari, S.C.; Auerbach, S.S.; Roberts, G.K.; Waidyanatha, S.; Fenton, S.E.; Phadke, D.P.; Balik-Meisner, M.R.; Tandon, A.; Mav, D.; et al. Unraveling Human Hepatocellular Responses to PFAS and Aqueous Film-Forming Foams (AFFFs) for Molecular Hazard Prioritization and In Vivo Translation. Environ. Sci. Technol. 2025, 59, 2423–2435. [Google Scholar] [CrossRef]
- Kaller, M.; Van Bortel, G.; Engels, T.; Thierens, R.; Fachinger, J. An Evaluation of the Firefighting Performance of Alcohol-Resistant Aqueous Film Forming Foams (AFFF-AR) and Alcohol-Resistant Fluorine-Free Foams (FFF-AR) in the Past Two Decades. Fire Technol. 2023, 59, 429–452. [Google Scholar] [CrossRef]
- Back, G.G. Aqueous Film Forming Foam (AFFF) Status and Alternatives: The Big Picture (2024 Status Update). Fire Technol. 2024, 60, 2019–2040. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, Z.; Yan, L.; Niu, G. Synthesis of Short-Chain Fluorocarbon Surfactant: Enhancing Surface and Foam Performance through Hydrocarbon Surfactants Compounding. Case Stud. Therm. Eng. 2024, 64, 105409. [Google Scholar] [CrossRef]
- Gharehveran, M.M.; Walus, A.M.; Anderson, T.A.; Subbiah, S.; Guelfo, J.; Frigon, M.; Longwell, A.; Suski, J.G. Per- and Polyfluoroalkyl Substances (PFAS)-Free Aqueous Film Forming Foam Formulations: Chemical Composition and Biodegradation in an Aerobic Environment. J. Environ. Chem. Eng. 2022, 10, 108953. [Google Scholar] [CrossRef]
- Jahura, F.T.; Mazumder, N.U.S.; Hossain, M.T.; Kasebi, A.; Girase, A.; Ormond, R.B. Exploring the Prospects and Challenges of Fluorine-Free Firefighting Foams (F3) as Alternatives to Aqueous Film-Forming Foams (AFFF): A Review. ACS Omega 2024, 9, 37430–37444. [Google Scholar] [CrossRef]
- Hagenaars, A.; Meyer, I.J.; Herzke, D.; Pardo, B.G.; Martinez, P.; Pabon, M.; De Coen, W.; Knapen, D. The Search for Alternative Aqueous Film Forming Foams (AFFF) with a Low Environmental Impact: Physiological and Transcriptomic Effects of Two Forafac® Fluorosurfactants in Turbot. Aquat. Toxicol. 2011, 104, 168–176. [Google Scholar] [CrossRef]
- Peng, M.; Sha, M.; Zhang, D.; Jiang, B. Study on Aqueous Film Forming Foam Extinguishing Agents Based on Perfluorobranched Short-Chain Fluorocarbon–Hydrocarbon Surfactant Complex Mixtures. Langmuir 2025, 41, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xu, Z.; Yan, L. Zwitterionic Short-Chain Fluorocarbon Surfactant: Synthesis, Synergy with Hydrocarbon Surfactants, and Effects of Inorganic Salts on Surface Activity and Foam Performance. Surf. Interfaces 2025, 72, 107125. [Google Scholar] [CrossRef]
- Bureiko, A.; Trybala, A.; Kovalchuk, N.; Starov, V. Current Applications of Foams Formed from Mixed Surfactant–Polymer Solutions. Adv. Colloid Interface Sci. 2015, 222, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xu, Z.; Yan, L. Competitive Adsorption and Gas Diffusion Inhibition Effect between Long-Chain Alcohol and Short-Chain Fluorocarbon Surfactant in Foam Solution. Colloids Surf. A-Physicochem. Eng. Asp. 2025, 726, 137777. [Google Scholar] [CrossRef]
- Giles, S.L.; Snow, A.W.; Hinnant, K.M.; Ananth, R. Modulation of fluorocarbon surfactant diffusion with diethylene glycol butyl ether for improved foam characteristics and fire suppression. Colloids Surf. A-Physicochem. Eng. Asp. 2019, 579, 123660. [Google Scholar] [CrossRef]
- ISO 7203-2019; Fire Extinguishing Media-Foam Concentrates. International Organization for Standardization: Geneva, Switzerland, 2019.
- GB 15308-2025; Foam Extinguishing Agent. Standardization Administration of the People’s Republic of China: Beijing, China, 2025.
- AlYousef, Z.A.; Almobarky, M.A.; Schechter, D.S. The effect of nanoparticle aggregation on surfactant foam stability. J. Colloid Interface Sci. 2018, 511, 365–373. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, S.; Ma, W.; Peng, Y.; Ma, L.; Wang, Q.; Hu, D. Tuning stability, rheology, and fire-extinguishing performance of advanced firefighting foam material by inorganic nanoparticle flame retardants. J. Colloid Interface Sci. 2025, 677, 378–389. [Google Scholar] [CrossRef]
- Sheng, Y.; Xue, M.; Zhang, S.; Wang, Y.; Zhai, X.; Zhao, Y.; Ma, L.; Liu, X. Role of nanoparticles in the performance of foam stabilized by a mixture of hydrocarbon and fluorocarbon surfactants. Chem. Eng. Sci. 2020, 228, 115977. [Google Scholar] [CrossRef]
- Van Gheluwe, L.; Chourpa, I.; Gaigne, C.; Munnier, E. Polymer-Based Smart Drug Delivery Systems for Skin Application and Demonstration of Stimuli-Responsiveness. Polymers 2021, 13, 1285. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Patil, S.; Kamal, M.S.; Adewunmi, A.A.; Yusuff, A.S.; Agi, A.; Oseh, J. Application of Polymers for Chemical Enhanced Oil Recovery: A Review. Polymers 2022, 14, 1433. [Google Scholar] [CrossRef]
- Wang, B.; Huang, D.; Weng, Z. Recent Advances in Polymer-Based Biosensors for Food Safety Detection. Polymers 2023, 15, 3253. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, K.; Li, C.; Li, H.; Zhang, M.; Liu, H. Stability and Rheological Properties of Firefighting Foams with Sodium Carboxymethyl Cellulose and Hydrocarbon/Silicone Surfactants. Chem. Eng. Sci. 2024, 288, 119733. [Google Scholar] [CrossRef]
- Li, H. Effects of SiO2 Nanoparticles and Polymers on the Rheology of Fluorine-Free Foam. ACS Omega 2025, 10, 38046–38055. [Google Scholar] [CrossRef]
- Kang, W.; Yan, L.; Ding, F.; Xu, Z. Effect of polysaccharide polymers on the surface and foam properties of aqueous film-forming foam. Colloid Interface Sci. Commun. 2021, 45, 100540. [Google Scholar] [CrossRef]
- Wang, D.; Gao, P.; Jiang, K.; Kong, D.; Zhang, J.; Guo, Y.; Shang, F.; Zhang, J. Comparative Study on the Enhancement of the Stability of Siloxane-Based Gemini/Sodium Alpha-Alkenyl Sulfonate Mixed Dispersions Using Xanthan Gum, Carboxymethyl Cellulose, and Gelatin. Int. J. Biol. Macromol. 2025, 292, 139378. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, F.; Miao, X.; Jiang, N.; Zong, R.; Lu, S.; Li, C. Experimental Investigation on the Spread of Aqueous Foam over Ethanol Surface. Chin. J. Chem. Eng. 2020, 28, 2946–2954. [Google Scholar] [CrossRef]
- Kang, W.; Zhang, Z.; Zhou, Q.; Xing, Y.; Lu, Y. Preparation of Environmentally friendly Foam Extinguishing Agent Based on Inorganic Salt and Polysaccharide Mixtures for Firefighting Diesel Pool Fire. J. Build. Eng. 2025, 102, 111992. [Google Scholar] [CrossRef]
- Davarpanah, A.; Shirmohanmadi, R.; Mirshekari, B. Experimental evaluation of polymer-enhanced foam transportation on the foam stabilization in the porous media. Int. J. Environ. Sci. Technol. 2019, 16, 8107–8116. [Google Scholar] [CrossRef]
- Duan, M.; Hu, X.; Ren, D.; Guo, H. Studies on foam stability by the actions of hydrophobically modified polyacrylamides. Colloid Polym. Sci. 2004, 282, 1292–1296. [Google Scholar] [CrossRef]
- Wu, G.; Zhu, Q.; Yuan, C.; Wang, H.; Li, C.; Sun, S.; Hu, S. Molecular dynamics simulation of the influence of polyacrylamide on the stability of sodium dodecyl sulfate foam. Chem. Eng. Sci. 2017, 166, 313–319. [Google Scholar] [CrossRef]
- Grzadka, E.; Matusiak, J.; Stankevic, M. Interactions between fluorocarbon surfactants and polysaccharides. J. Mol. Liq. 2019, 283, 81–90. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, L.; Xu, J.; Han, Q. Experimental study on performance improvement of anionic surfactant foaming agent by xanthan gum. Constr. Build. Mater. 2020, 230, 116993. [Google Scholar] [CrossRef]
- Wagh, C.D.; Gandhi, I.S.R. Investigations on the performance of xanthan gum as a foam stabilizer and assessment of economic and environmental impacts of foam concrete production. J. Build. Eng. 2024, 82, 108286. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Zhao, Y.; Geng, Z.; Hu, X.; Cheng, W.; Dong, Y. Performance Optimization and Mechanism Analysis of Applied Enteromorpha-Based Composite Dust Suppressant. Environ. Geochem. Health 2023, 45, 4897–4913. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Jiang, N.; Lu, S.; Li, C. Fluorinated and fluorine-free firefighting foams spread on heptane surface. Colloids Surf. A-Physicochem. Eng. Asp. 2018, 552, 1–8. [Google Scholar] [CrossRef]
- Sheng, Y.; Jiang, N.; Sun, X.; Lu, S.; Li, C. Experimental Study on Effect of Foam Stabilizers on Aqueous Film-Forming Foam. Fire Technol. 2018, 54, 211–228. [Google Scholar] [CrossRef]
- García-Ochoa, F.; Santos, V.E.; Casas, J.A.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Fu, Z.; Lu, S. Stabilization mechanisms of foams enhanced by xanthan gum and sodium carboxymethyl cellulose: Rheology–bubble structure interplay and predictive criteria for drainage delays. Carbohydr. Polym. 2025, 366, 123901. [Google Scholar] [CrossRef]
- Lin, F. Adsorption and dilational rheology of polyacrylamide at interfaces: Implication on the stability of polymer-containing foamulsions. Colloid Polym. Sci. 2025, 303, 747–758. [Google Scholar] [CrossRef]
- Denkov, N.; Tcholakova, S.; Politova-Brinkova, N. Physicochemical control of foam properties. Curr. Opin. Colloid Interface Sci. 2020, 50, 101376. [Google Scholar] [CrossRef]
- Xie, J.; Yin, L.; Chen, D.; Shi, Y.; Wang, Y. Experimental study on the preparation and characterization of CMC-GG-XG high-stability gel foam. Colloid Polym. Sci. 2025, 1–17. [Google Scholar] [CrossRef]
- Joshi, D.; Ramesh, D.N.; Prakash, S.; Saw, R.K.; Maurya, N.K.; Rathi, K.B.; Mitra, S.; Sinha, O.P.; Bikkina, P.K.; Mandal, A. Formulation and characterisation of polymer and nanoparticle-stabilized anionic surfactant foam for application in enhanced oil recovery. Surf. Interfaces 2025, 56, 105615. [Google Scholar] [CrossRef]
- Feitosa, K.; Halt, O.L.; Kamien, R.D.; Durian, D.J. Bubble kinetics in a steady- state column of aqueous foam. Europhys. Lett. 2006, 76, 683–689. [Google Scholar] [CrossRef]
- Rio, E.; Drenckhan, W.; Salonen, A.; Langevin, D. Unusually stable liquid foams. Adv. Colloid Interface Sci. 2014, 205, 74–86. [Google Scholar] [CrossRef]
- Li, F.; Yu, X.; Fang, H.; Zong, R. Influence of Polymerization Degree on the Dynamic Interfacial Properties and Foaming Ability of Ammonium Polyphosphate (APP)-Surfactant Mixtures. J. Mol. Liq. 2021, 335, 116175. [Google Scholar] [CrossRef]










| Polymeric Stabilizer (wt.%) | PFH-BZ (mmol/L) | OB-2 (mmol/L) | Urea (wt.%) | Ethylene Glycol (wt.%) | 2-(2-Butoxyethoxy)ethanol (wt.%) |
|---|---|---|---|---|---|
| 0.00 | 2 | 4 | 3 | 3 | 1 |
| 0.02 | 2 | 4 | 3 | 3 | 1 |
| 0.04 | 2 | 4 | 3 | 3 | 1 |
| 0.06 | 2 | 4 | 3 | 3 | 1 |
| 0.08 | 2 | 4 | 3 | 3 | 1 |
| 0.10 | 2 | 4 | 3 | 3 | 1 |
| Concentration (wt.%) | SDO (mN/m) | SCYH (mN/m) | ||||
|---|---|---|---|---|---|---|
| XG | PAM | CMC-Na | XG | PAM | CMC-Na | |
| 0.00 | 5.83 | 5.83 | 5.83 | 4.65 | 4.65 | 4.65 |
| 0.02 | 5.46 | 6.08 | 5.79 | 4.39 | 4.66 | 4.73 |
| 0.04 | 5.40 | 6.06 | 5.66 | 4.36 | 4.71 | 4.64 |
| 0.06 | 5.37 | 6.05 | 5.55 | 4.32 | 4.73 | 4.54 |
| 0.08 | 5.23 | 6.07 | 5.53 | 4.15 | 4.79 | 4.54 |
| 0.10 | 4.91 | 6.03 | 5.46 | 3.79 | 4.79 | 4.47 |
| Concentration (wt.%) | <V0> × 10−3(mm) | tc(s) | Deff × 10−5/(mm/s) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| XG | PAM | CMC-Na | XG | PAM | CMC-Na | XG | PAM | CMC-Na | |
| 0.00 | 2.09 | 2.09 | 2.09 | 13.13 | 13.13 | 13.13 | 4.15 | 4.15 | 4.15 |
| 0.02 | 3.05 | 0.73 | 1.55 | 44.44 | 15.60 | 61.50 | 1.58 | 1.73 | 0.73 |
| 0.04 | 3.73 | 1.21 | 1.73 | 98.33 | 10.02 | 78.62 | 0.82 | 3.78 | 0.61 |
| 0.06 | 7.09 | 10.69 | 2.29 | 284.09 | 158.23 | 92.85 | 0.43 | 1.02 | 0.62 |
| 0.08 | 7.82 | 21.95 | 2.55 | 543.48 | 212.31 | 116.01 | 0.24 | 1.23 | 0.54 |
| 0.10 | 7.25 | 38.09 | 2.94 | 724.64 | 289.86 | 119.47 | 0.17 | 1.30 | 0.57 |
| Concentration (wt.%) | t25%(s) | ||
|---|---|---|---|
| XG | PAM | CMC-Na | |
| 0.00 | 30.46 ± 4.13 | 30.46 ± 4.13 | 30.46 ± 4.13 |
| 0.02 | 93.37 ± 8.21 | 43.17 ± 3.07 | 70.47 ± 3.75 |
| 0.04 | 206.25 ± 8.15 | 37.25 ± 0.35 | 85.15 ± 2.65 |
| 0.06 | 505.95 ± 3.45 | 33.53 ± 1.65 | 103.30 ± 2.20 |
| 0.08 | 894.50 ± 3.90 | 27.83 ± 3.49 | 112.57 ± 7.04 |
| 0.10 | 1519.15 ± 4.15 | 12.83 ± 1.33 | 160.53 ± 8.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Zhu, Z.; Xu, Z.; Yan, L. Polysaccharides and Polyacrylamide as Linear Polymeric Stabilizers for Zwitterionic Short-Chain Fluorocarbon Surfactant: Interfacial Properties, Apparent Viscosity, and Foam Performance. Polymers 2025, 17, 3112. https://doi.org/10.3390/polym17233112
Zhao W, Zhu Z, Xu Z, Yan L. Polysaccharides and Polyacrylamide as Linear Polymeric Stabilizers for Zwitterionic Short-Chain Fluorocarbon Surfactant: Interfacial Properties, Apparent Viscosity, and Foam Performance. Polymers. 2025; 17(23):3112. https://doi.org/10.3390/polym17233112
Chicago/Turabian StyleZhao, Wenjun, Ziyang Zhu, Zhisheng Xu, and Long Yan. 2025. "Polysaccharides and Polyacrylamide as Linear Polymeric Stabilizers for Zwitterionic Short-Chain Fluorocarbon Surfactant: Interfacial Properties, Apparent Viscosity, and Foam Performance" Polymers 17, no. 23: 3112. https://doi.org/10.3390/polym17233112
APA StyleZhao, W., Zhu, Z., Xu, Z., & Yan, L. (2025). Polysaccharides and Polyacrylamide as Linear Polymeric Stabilizers for Zwitterionic Short-Chain Fluorocarbon Surfactant: Interfacial Properties, Apparent Viscosity, and Foam Performance. Polymers, 17(23), 3112. https://doi.org/10.3390/polym17233112

