polymers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 15779 KB  
Review
A Review on the Application of Deep Eutectic Solvents in Polymer-Based Membrane Preparation for Environmental Separation Technologies
by Gorka Marco-Velasco, Alejandro Gálvez-Subiela, Ramón Jiménez-Robles, Marta Izquierdo, Amparo Cháfer and José David Badia
Polymers 2024, 16(18), 2604; https://doi.org/10.3390/polym16182604 - 14 Sep 2024
Cited by 13 | Viewed by 4607
Abstract
The use of deep eutectic solvents (DESs) for the preparation of polymer membranes for environmental separation technologies is comprehensively reviewed. DESs have been divided into five categories based on the hydrogen bond donor (HBD) and acceptor (HBA) that are involved in the production [...] Read more.
The use of deep eutectic solvents (DESs) for the preparation of polymer membranes for environmental separation technologies is comprehensively reviewed. DESs have been divided into five categories based on the hydrogen bond donor (HBD) and acceptor (HBA) that are involved in the production of the DESs, and a wide range of DESs’ physicochemical characteristics, such as density, surface tension, viscosity, and melting temperature, are initially gathered. Furthermore, the most popular techniques for creating membranes have been demonstrated and discussed, with a focus on the non-solvent induced phase separation (NIPS) method. Additionally, a number of studies have been reported in which DESs were employed as pore formers, solvents, additives, or co-solvents, among other applications. The addition of DESs to the manufacturing process increased the presence of finger-like structures and macrovoids in the cross-section and, on numerous occasions, had a substantial impact on the overall porosity and pore size. Performance data were also gathered for membranes made for various separation technologies, such as ultrafiltration (UF) and nanofiltration (NF). Lastly, DESs provide various options for the functionalization of membranes, such as the creation of various liquid membrane types, with special focus on supported liquid membranes (SLMs) for decarbonization technologies, discussed in terms of permeability and selectivity of several gases, including CO2, N2, and CH4. Full article
(This article belongs to the Special Issue Functional Polymers for Membrane Separation Process)
Show Figures

Figure 1

22 pages, 6216 KB  
Article
Synthesis and Dye Adsorption Dynamics of Chitosan–Polyvinylpolypyrrolidone (PVPP) Composite
by Hilda Dinah Kyomuhimbo, Wandile McHunu, Marco Arnold, Usisipho Feleni, Nils H. Haneklaus and Hendrik Gideon Brink
Polymers 2024, 16(18), 2555; https://doi.org/10.3390/polym16182555 - 10 Sep 2024
Cited by 2 | Viewed by 2455
Abstract
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown [...] Read more.
One major environmental issue responsible for water pollution is the presence of dyes in the aquatic environment as a result of human activity, particularly the textile industry. Chitosan–Polyvinylpolypyrrolidone (PVPP) polymer composite beads were synthesized and explored for the adsorption of dyes (Bismarck brown (BB), orange G (OG), brilliant blue G (BBG), and indigo carmine (IC)) from dye solution. The CS-PVPP beads demonstrated high removal efficiency of BB (87%), OG (58%), BBG (42%), and IC (49%). The beads demonstrated a reasonable surface area of 2.203 m2/g and were negatively charged in the applicable operating pH ranges. TGA analysis showed that the polymer composite can withstand decomposition up to 400 °C, proving high stability in harsh conditions. FTIR analysis highlighted the presence of N-H amine, O-H alcohol, and S=O sulfo groups responsible for electrostatic interaction and hydrogen bonding with the dye molecules. A shift in the FTIR bands was observed on N-H and C-N stretching for the beads after dye adsorption, implying that adsorption was facilitated by hydrogen bonding and Van der Waals forces of attraction between the hydroxyl, amine, and carbonyl groups on the surface of the beads and the dye molecules. An increase in pH increased the adsorption capacity of the beads for BB while decreasing OG, BBG, and IC due to their cationic and anionic nature, respectively. While an increase in temperature did not affect the adsorption capacity of OG and BBG, it significantly improved the removal of BB and IC from the dye solution and the adsorption was thermodynamically favoured, as demonstrated by the negative Gibbs free energy at all temperatures. Adsorption of dye mixtures followed the characteristic adsorption nature of the individual dyes. The beads show great potential for applications in the treatment of dye wastewater. Full article
(This article belongs to the Special Issue Advanced Polymers for Wastewater Treatment and Toxicant Removal)
Show Figures

Figure 1

11 pages, 5047 KB  
Article
Study on the Polymer Morphology and Electro-Optical Performance of Acrylate/Epoxy Resin-Based Polymer-Stabilized Liquid Crystals Based on Stepwise Photopolymerization
by Yishuo Wu, Guangyang Shang, Cong Ma, Yingjie Shi, Zhexu Song, Peixiang Wang, Yanzi Gao, Qian Wang, Meina Yu, Jiumei Xiao and Cheng Zou
Polymers 2024, 16(17), 2446; https://doi.org/10.3390/polym16172446 - 29 Aug 2024
Cited by 1 | Viewed by 1317
Abstract
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be [...] Read more.
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be controlled precisely. Herein, a novel polymer-stabilized liquid crystal film based on acrylate/epoxy resin is proposed, fabricated and the relationships between preparation process, polymer content, polymer morphology and electro-optical properties are studied. The in-situ photopolymerization of acrylate/epoxy resin liquid crystalline polymer is fulfilled using cation photo-initiator UV 6976. The distinct photopolymerization speed between acrylate and epoxy resin benefits the polymer morphology control, and with accurate containment of the polymerization process and polymer composition, the superior electro-optical properties at a higher polymer content are acquired. The polymer morphology and electro-optical properties are influenced by the polymer content and mass ratio between acrylate and epoxy resin. The best electro-optical properties among samples are attained by controlling the mass ratio between acrylate and epoxy resin to 1:1, integrating higher densities of scattering centers and lower anchoring effect. With higher polymer content, the strategy of increasing the mass ratio of E6M benefits the improvement of E-O properties for alleviating polymer density. This work provides insights to stepwise polymerization of liquid crystalline monomers and offers a fancy strategy for the preparation of novel liquid crystal dimming films. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites III)
Show Figures

Graphical abstract

14 pages, 6036 KB  
Review
Constructing Multifunctional Composite Single Crystals via Polymer Gel Incorporation
by Zhiwen Mao, Jie Ren and Hanying Li
Polymers 2024, 16(16), 2379; https://doi.org/10.3390/polym16162379 - 22 Aug 2024
Viewed by 1404
Abstract
The non-uniformity of a single crystal can sometimes be found in biominerals, where surrounding biomacromolecules are incorporated into the growing crystals. This unique composite structure, combining heterogeneity and long-range ordering, enables the functionalization of single crystals. Polymer gel media are often used to [...] Read more.
The non-uniformity of a single crystal can sometimes be found in biominerals, where surrounding biomacromolecules are incorporated into the growing crystals. This unique composite structure, combining heterogeneity and long-range ordering, enables the functionalization of single crystals. Polymer gel media are often used to prepare composite single crystals, in which the growing crystals incorporate gel networks and form a bi-continuous interpenetrating structure without any disruption to single crystallinity. Moreover, dyes and many kinds of nanoparticles can be occluded into single crystals under the guidance of gel incorporation. On this basis, the bio-inspired method has been applied in crystal morphology control, crystal dyeing, mechanical reinforcement, and organic bulk heterojunction-based optoelectronics. In this paper, the composite structure, the incorporation mechanisms, and the multiple functions of gel-incorporated single crystals are reviewed. Full article
Show Figures

Figure 1

17 pages, 7103 KB  
Article
Cleaner and Sustainable Production of Core–Sheath Polymer Fibres
by Manul Amarakoon, Anthony Harker, Shervanthi Homer-Vanniasinkam and Mohan Edirisinghe
Polymers 2024, 16(16), 2357; https://doi.org/10.3390/polym16162357 - 20 Aug 2024
Cited by 1 | Viewed by 1319
Abstract
The amalgamation of sustainable practises throughout the fabrication process with advanced material engineering holds promise not only for eco-conscious manufacturing but also for promoting technological advancements in versatile material design and application. Moreover, technological innovation serves as a catalyst for sustainability initiatives, driving [...] Read more.
The amalgamation of sustainable practises throughout the fabrication process with advanced material engineering holds promise not only for eco-conscious manufacturing but also for promoting technological advancements in versatile material design and application. Moreover, technological innovation serves as a catalyst for sustainability initiatives, driving innovation and enabling the adoption of greener practises across industries. This study investigates redefining the production protocol of pressure spinning to produce core–sheath polymer fibres, deepening sustainable practises. It aims to explore innovative approaches such as modifying spinning parameters, optimising polymer solvent configurations and understanding fluid behaviour to curtail material wastage and maintain minimal energy consumption without compromising production efficiency. Utilising Polyvinylpyrrolidone (PVP) for the core and Polyethylene oxide (PEO) for the sheath, production rates of up to 64 g/h were achieved with a fibre diameter range of 3.2 ± 1.7 µm to 4.6 ± 2.0 µm. Energy consumption per mass of fibres produced showed a decreasing trend overall with increasing applied gas pressure. These findings highlight the potential for the efficient and scalable production of core–sheath fibres with applications in various advanced materials fields. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

32 pages, 9337 KB  
Review
Benefits of Incorporating Lignin into Starch-Based Films: A Brief Review
by Lamia Zuniga Linan, Farayde Matta Fakhouri, Gislaine Ferreira Nogueira, Justin Zoppe and José Ignacio Velasco
Polymers 2024, 16(16), 2285; https://doi.org/10.3390/polym16162285 - 13 Aug 2024
Cited by 10 | Viewed by 3002
Abstract
Polysaccharides are an excellent renewable source for developing food-packing materials. It is expected that these packages can be an efficient barrier against oxygen; can reduce lipid peroxidation, and can retain the natural aroma of a food commodity. Starch has tremendous potential to be [...] Read more.
Polysaccharides are an excellent renewable source for developing food-packing materials. It is expected that these packages can be an efficient barrier against oxygen; can reduce lipid peroxidation, and can retain the natural aroma of a food commodity. Starch has tremendous potential to be explored in the preparation of food packaging; however, due to their high hydrophilic nature, packaging films produced from starch possess poor protective moisture barriers and low mechanical properties. This scenario limits their applications, especially in humid conditions. In contrast, lignin’s highly complex aromatic hetero-polymer network of phenylpropane units is known to play a filler role in polysaccharide films. Moreover, lignin can limit the biodegradability of polysaccharides films by a physical barrier, mainly, and by non-productive bindings. The main interactions affecting lignin non-productive bindings are hydrophobic interactions, electrostatic interactions, and hydrogen-bonding interactions, which are dependent on the total phenolic –OH and –COOH content in its chemical structure. In this review, the use of lignin as a reinforcement to improve the biodegradability of starch-based films in wet environments is presented. Moreover, the characteristics of the used lignins, the mechanisms of molecular interaction among these materials, and the sensitive physicochemical parameters for biodegradability detection are related. Full article
(This article belongs to the Collection Lignin)
Show Figures

Figure 1

12 pages, 1708 KB  
Article
Fabricating High Strength Bio-Based Dynamic Networks from Epoxidized Soybean Oil and Poly(Butylene Adipate-co-Terephthalate)
by Bin Xu, Zhong-Ming Xia, Rui Zhan and Ke-Ke Yang
Polymers 2024, 16(16), 2280; https://doi.org/10.3390/polym16162280 - 11 Aug 2024
Viewed by 1688
Abstract
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic [...] Read more.
Amid the rapid development of modern society, the widespread use of plastic products has led to significant environmental issues, including the accumulation of non-degradable waste and extensive consumption of non-renewable resources. Developing healable, recyclable, bio-based materials from abundant renewable resources using diverse dynamic interactions attracts increasing global attention. However, achieving a good balance between the self-healing capacity and mechanical performance, such as strength and toughness, remains challenging. In our study, we address this challenge by developing a new type of dynamic network from epoxidized soybean oil (ESO) and poly(butylene adipate-co-terephthalate) (PBAT) with good strength and toughness. For the synthetic strategy, a thiol–epoxy click reaction was conducted to functionalize ESO with thiol and hydroxyl groups. Subsequently, a curing reaction with isocyanates generated dynamic thiourethane and urethane bonds with different bonding energies in the dynamic networks to reach a trade-off between dynamic features and mechanical properties; amongst these, the thiourethane bonds with a lower bonding energy provide good dynamic features, while the urethane bonds with a higher bonding energy ensure good mechanical properties. The incorporation of flexible PBAT segments to form the rational multi-phase structure with crystalline domains further enhanced the products. A typical sample, OTSO100-PBAT100, exhibited a tensile strength of 33.2 MPa and an elongation at break of 1238%, demonstrating good healing capacity and desirable mechanical performance. This study provides a promising solution to contemporary environmental and energy challenges by developing materials that combine mechanical and repair properties. It addresses the specific gap of achieving a trade-off between tensile strength and elongation at break in bio-based self-healing materials, promising a wide range of applications. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

20 pages, 11742 KB  
Article
Large Enhancement of Photoluminescence Obtained in Thin Polyfluorene Films of Optimized Microstructure
by Otto Todor-Boer, Cosmin Farcău and Ioan Botiz
Polymers 2024, 16(16), 2278; https://doi.org/10.3390/polym16162278 - 11 Aug 2024
Cited by 2 | Viewed by 1639
Abstract
There is a clearly demonstrated relationship between the microstructure, processing and resulting optoelectronic properties of conjugated polymers. Here, we exploited this relationship by exposing polyfluorene thin films to various solvent vapors via confined-solvent vapor annealing to optimize their microstructure, with the final goal [...] Read more.
There is a clearly demonstrated relationship between the microstructure, processing and resulting optoelectronic properties of conjugated polymers. Here, we exploited this relationship by exposing polyfluorene thin films to various solvent vapors via confined-solvent vapor annealing to optimize their microstructure, with the final goal being to enhance their emission properties. Our results have demonstrated enlargements in photoluminescence intensity of up to 270%, 258% and 240% when thin films of polyfluorenes of average molecular weights of 105,491 g/mol, 63,114 g/mol and 14,000 g/mol, respectively, experienced increases in their β-phase fractions upon processing. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

15 pages, 6254 KB  
Article
Effects of the Amylose/Amylopectin Ratio of Starch on Borax-Crosslinked Hydrogels
by Kai Lu, Rudy Folkersma, Vincent S. D. Voet and Katja Loos
Polymers 2024, 16(16), 2237; https://doi.org/10.3390/polym16162237 - 6 Aug 2024
Cited by 8 | Viewed by 4195
Abstract
Herein, we simultaneously prepared borax-crosslinked starch-based hydrogels with enhanced mechanical properties and self-healing ability via a simple one-pot method. The focus of this work is to study the effects of the amylose/amylopectin ratio of starch on the grafting reactions and the performance of [...] Read more.
Herein, we simultaneously prepared borax-crosslinked starch-based hydrogels with enhanced mechanical properties and self-healing ability via a simple one-pot method. The focus of this work is to study the effects of the amylose/amylopectin ratio of starch on the grafting reactions and the performance of the resulting borax-crosslinked hydrogels. An increase in the amylose/ amylopectin ratio increased the gel fraction and grafting ratio but decreased the swelling ratio and pore diameter. Compared with hydrogels prepared from low-amylose starches, hydrogels prepared from high-amylose starches showed pronouncedly increased network strength, and the maximum storage modulus increased by 8.54 times because unbranched amylose offered more hydroxyl groups to form dynamic borate ester bonds with borate ions and intermolecular hydrogen bonds, leading to an enhanced crosslink density. In addition, all the hydrogels exhibited a uniformly interconnected network structure. Furthermore, owing to the dynamic borate ester bonds and hydrogen bonds, the hydrogel exhibited excellent recovery behavior under continuous step strain, and it also showed thermal responsiveness. Full article
Show Figures

Graphical abstract

15 pages, 677 KB  
Article
Correlative Effects on Nanoplastic Aggregation in Model Extracellular Biofilm Substances Investigated with Fluorescence Correlation Spectroscopy
by Tobias Guckeisen, Rozalia Orghici and Silke Rathgeber
Polymers 2024, 16(15), 2170; https://doi.org/10.3390/polym16152170 - 30 Jul 2024
Cited by 2 | Viewed by 1437
Abstract
Recent studies show that biofilm substances in contact with nanoplastics play an important role in the aggregation and sedimentation of nanoplastics. Consequences of these processes are changes in biofilm formation and stability and changes in the transport and fate of pollutants in the [...] Read more.
Recent studies show that biofilm substances in contact with nanoplastics play an important role in the aggregation and sedimentation of nanoplastics. Consequences of these processes are changes in biofilm formation and stability and changes in the transport and fate of pollutants in the environment. Having a deeper understanding of the nanoplastics–biofilm interaction would help to evaluate the risks posed by uncontrolled nanoplastic pollution. These interactions are impacted by environmental changes due to climate change, such as, e.g., the acidification of surface waters. We apply fluorescence correlation spectroscopy (FCS) to investigate the pH-dependent aggregation tendency of non-functionalized polystyrene (PS) nanoparticles (NPs) due to intermolecular forces with model extracellular biofilm substances. Our biofilm model consists of bovine serum albumin (BSA), which serves as a representative for globular proteins, and the polysaccharide alginate, which is a main component in many biofilms, in solutions containing Na+ with an ionic strength being realistic for fresh-water conditions. Biomolecule concentrations ranging from 0.5 g/L up to at maximum 21 g/L are considered. We use non-functionalized PS NPs as representative for mostly negatively charged nanoplastics. BSA promotes NP aggregation through adsorption onto the NPs and BSA-mediated bridging. In BSA–alginate mixtures, the alginate hampers this interaction, most likely due to alginate–BSA complex formation. In most BSA–alginate mixtures as in alginate alone, NP aggregation is predominantly driven by weaker, pH-independent depletion forces. The stabilizing effect of alginate is only weakened at high BSA contents, when the electrostatic BSA–BSA attraction is not sufficiently screened by the alginate. This study clearly shows that it is crucial to consider correlative effects between multiple biofilm components to better understand the NP aggregation in the presence of complex biofilm substances. Single-component biofilm model systems based on comparing the total organic carbon (TOC) content of the extracellular biofilm substances, as usually considered, would have led to a misjudgment of the stability towards aggregation. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

14 pages, 4427 KB  
Article
Constructing Heterostructured MWCNT-BN Hybrid Fillers in Electrospun TPU Films to Achieve Superior Thermal Conductivity and Electrical Insulation Properties
by Yang Zhang, Shichang Wang, Hong Wu and Shaoyun Guo
Polymers 2024, 16(15), 2139; https://doi.org/10.3390/polym16152139 - 27 Jul 2024
Cited by 2 | Viewed by 1699
Abstract
The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) [...] Read more.
The development of thermally conductive polymer/boron nitride (BN) composites with excellent electrically insulating properties is urgently demanded for electronic devices. However, the method of constructing an efficient thermally conductive network is still challenging. In the present work, heterostructured multi-walled carbon nanotube-boron nitride (MWCNT-BN) hybrids were easily prepared using an electrostatic self-assembly method. The thermally conductive network of the MWCNT-BN in the thermoplastic polyurethane (TPU) matrix was achieved by the electrospinning and stack-molding process. As a result, the in-plane thermal conductivity of TPU composite films reached 7.28 W m−1 K−1, an increase of 959.4% compared to pure TPU films. In addition, the Foygel model showed that the MWCNT-BN hybrid filler could largely decrease thermal resistance compared to that of BN filler and further reduce phonon scattering. Finally, the excellent electrically insulating properties (about 1012 Ω·cm) and superior flexibility of composite film make it a promising material in electronic equipment. This work offers a new idea for designing BN-based hybrids, which have broad prospects in preparing thermally conductive composites for further practical thermal management fields. Full article
(This article belongs to the Special Issue Advance in Polymer Composites: Fire Protection and Thermal Management)
Show Figures

Figure 1

16 pages, 5130 KB  
Article
Mechanical and Insulation Performance of Rigid Polyurethane Foam Reinforced with Lignin-Containing Nanocellulose Fibrils
by Kabirat O. Bello and Ning Yan
Polymers 2024, 16(15), 2119; https://doi.org/10.3390/polym16152119 - 25 Jul 2024
Cited by 7 | Viewed by 2695
Abstract
Isocyanates are critical components that affect the crosslinking density and structure of polyurethane (PU) foams. However, due to the cost and hazardous nature of the precursor for isocyanate synthesis, there is growing interest in reducing their usage in polyurethane foam production—especially in rigid [...] Read more.
Isocyanates are critical components that affect the crosslinking density and structure of polyurethane (PU) foams. However, due to the cost and hazardous nature of the precursor for isocyanate synthesis, there is growing interest in reducing their usage in polyurethane foam production—especially in rigid PU foams (RPUF) where isocyanate is used in excess of the stoichiometric ratio. In this study, lignin-containing nanocellulose fibrils (LCNF) were explored as mechanical reinforcements for RPUF with the goal of maintaining the mechanical performance of the foam while using less isocyanate. Different amounts of LCNF (0–0.2 wt.%) were added to the RPUF made using isocyanate indices of 1.1, 1.05, 1.0, and 0.95. Results showed that LCNF served as a nucleating agent, significantly reducing cell size and thermal conductivity. LCNF addition increased the crosslinking density of RPUF, leading to enhanced compressive properties at an optimal loading of 0.1 wt.% compared to unreinforced foams at the same isocyanate index. Furthermore, at the optimal loading, LCNF-reinforced foams made at lower isocyanate indices showed comparable stiffness and strength to unreinforced foams made at higher isocyanate indices. These results highlight the reinforcing potential of LCNF in rigid polyurethane foams to improve insulation and mechanical performance with lower isocyanate usage. Full article
Show Figures

Figure 1

16 pages, 1176 KB  
Review
Advancements in Stone Object Restoration Using Polymer-Inorganic Phosphate Composites for Cultural Heritage Preservation
by Toma Fistos, Irina Fierascu, Doina Manaila-Maximean and Radu Claudiu Fierascu
Polymers 2024, 16(14), 2085; https://doi.org/10.3390/polym16142085 - 22 Jul 2024
Cited by 4 | Viewed by 2289
Abstract
Recent advancements in cultural heritage preservation have increasingly focused on the development and application of new composites, harnessing the diverse properties of their components. This study reviews the current state of research and practical applications of these innovative materials, emphasizing the use of [...] Read more.
Recent advancements in cultural heritage preservation have increasingly focused on the development and application of new composites, harnessing the diverse properties of their components. This study reviews the current state of research and practical applications of these innovative materials, emphasizing the use of inorganic phosphatic materials (in particular the hydroxyapatite) and various polymers. The compatibility of phosphatic materials with calcareous stones and the protective properties of polymers present a synergistic approach to addressing common deterioration mechanisms, such as salt crystallization, biological colonization, and mechanical weathering. By examining recent case studies and experimental results, this paper highlights the effectiveness, challenges, and future directions for these composites in cultural heritage conservation. The findings underscore the potential of these materials to enhance the durability and aesthetic integrity of heritage stones, promoting sustainable and long-term preservation solutions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

16 pages, 4380 KB  
Article
Atmospheric Plasma Treatment to Improve PHB Coatings on 316L Stainless Steel
by J. Radilla, H. Martínez, O. Vázquez and B. Campillo
Polymers 2024, 16(14), 2073; https://doi.org/10.3390/polym16142073 - 20 Jul 2024
Viewed by 2017
Abstract
In the present study, biopolymeric coatings of polyhydroxybutyrate (PHB) were deposited on 316L stainless steel substrates. The PHB coatings were developed using the spin coating method. To improve the adhesion of the PHB coating on the substrate, this method uses an atmospheric plasma [...] Read more.
In the present study, biopolymeric coatings of polyhydroxybutyrate (PHB) were deposited on 316L stainless steel substrates. The PHB coatings were developed using the spin coating method. To improve the adhesion of the PHB coating on the substrate, this method uses an atmospheric plasma treatment. Adhesion tests show a 156% increase in adhesion after 5 s of surface treatment. Raman spectroscopy analysis of the polymer shows the incorporation of functional groups and the formation of new hydrogen bonds, which can help us bind drugs and promote osteogenesis after plasma treatment. Additionally, the electrochemical behaviors in artificial body fluids (Hanks’ solution) of the PHB coatings on the steel were evaluated with potentiodynamic tests, which revealed a decrease in the corrosion current and resistance to the transfer of the charge from the electrolyte to the 316L steel because of the PHB coating. All the PHB coatings were characterized using scanning electron microscopy and Raman spectroscopy after the electrochemical tests. This analysis confirmed the diffusion of electrolyte species toward the surface and the degradation of the polymer chain for the first 15 s of treatment with atmospheric plasma. These findings support the claim that plasma surface modification is a quick, environmentally friendly, and cost-effective method to enhance the performance of PHB coatings on 316L stainless steel for medical devices. Full article
(This article belongs to the Special Issue Plasma Processing of Polymers, 2nd Edition)
Show Figures

Figure 1

21 pages, 39792 KB  
Review
Eco-Friendly Polymer Nanocomposite Coatings for Next-Generation Fire Retardants for Building Materials
by Haradhan Kolya and Chun-Won Kang
Polymers 2024, 16(14), 2045; https://doi.org/10.3390/polym16142045 - 17 Jul 2024
Cited by 15 | Viewed by 5844
Abstract
The increasing global commitment to carbon neutrality has propelled a heightened focus on sustainable construction materials, with wood emerging as pivotal due to its environmental benefits. This review explores the development and application of eco-friendly polymer nanocomposite coatings to enhance wood’s fire resistance, [...] Read more.
The increasing global commitment to carbon neutrality has propelled a heightened focus on sustainable construction materials, with wood emerging as pivotal due to its environmental benefits. This review explores the development and application of eco-friendly polymer nanocomposite coatings to enhance wood’s fire resistance, addressing a critical limitation in its widespread adoption. These nanocomposites demonstrate improved thermal stability and char formation properties by integrating nanoparticles, such as nano-clays, graphene oxide, and metal oxides, into biopolymer matrices. This significantly mitigates the flammability of wood substrates, creating a robust barrier against heat and oxygen. The review provides a comprehensive examination of these advanced coatings’ synthesis, characterization, and performance. By emphasizing recent innovations and outlining future research directions, this review underscores the potential of eco-friendly polymer nanocomposite coatings as next-generation fire retardants. This advancement supports the expanded utilization of wood in sustainable construction practices and aligns with global initiatives toward achieving carbon neutrality. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Composites)
Show Figures

Figure 1

14 pages, 4710 KB  
Article
Behavior of a Precast Bridge Pier with Basalt Fiber-Reinforced Polymer (BFRP)-Strengthened Segments under Seismic Loading
by Chao Li, Yaowei Peng, Pengyu Yang, Hao Zhou and Ningbo Wang
Polymers 2024, 16(14), 2018; https://doi.org/10.3390/polym16142018 - 15 Jul 2024
Cited by 1 | Viewed by 1388
Abstract
The precast segmental column (PSC) has been proposed for reducing onsite construction time and minimizing impacts on traffic and the environment. It has been proven to have good seismic performance according to previous studies. However, due to the rocking behavior of the column, [...] Read more.
The precast segmental column (PSC) has been proposed for reducing onsite construction time and minimizing impacts on traffic and the environment. It has been proven to have good seismic performance according to previous studies. However, due to the rocking behavior of the column, the toe of the bottom segment could experience excessive compressive damage. In addition, the commonly used steel rebars in the PSC could experience corrosion problems during the service life of the structure. Moreover, ordinary Portland cement concrete (OPC) is normally used in the construction of the PSC, but the manufacturing processes of the OPC could emit a lot of carbon dioxide. This paper investigates the seismic performance of PSCs incorporating Basalt Fiber Reinforced Polymer (BFRP) bars and geopolymer concrete (GPC) segments. To mitigate the concrete crushing damage of the segment, the BFRP sheet was used to wrap the bottom segment of one of the specimens. The results revealed that the BFRP-reinforced geopolymer concrete PSC exhibited good seismic performance with minimal damage and small residual displacement. Strengthening the bottom segment with BFRP wrapping proved to be effective in reducing concrete damage. As a result, the column with BFRP wrap demonstrated the ability to withstand ground motions with higher Peak Ground Acceleration (PGA) compared to the column without strengthening. Full article
Show Figures

Figure 1

13 pages, 5394 KB  
Article
Natural Rubber/Styrene–Butadiene Rubber Blend Composites Potentially Applied in Damping Bearings
by Saifeng Tang, Zhanxu Li, Weichong Sun, Yangling Liu, Jian Wang, Xiong Wang and Jun Lin
Polymers 2024, 16(13), 1945; https://doi.org/10.3390/polym16131945 - 8 Jul 2024
Cited by 8 | Viewed by 3232
Abstract
Natural rubber (NR) composites have been widely applied in damping products to reduce harmful vibrations, while rubber with only a single composition barely meets performance requirements. In this study, rubber blend composites including various ratios of NR and styrene butadiene rubber (SBR) were [...] Read more.
Natural rubber (NR) composites have been widely applied in damping products to reduce harmful vibrations, while rubber with only a single composition barely meets performance requirements. In this study, rubber blend composites including various ratios of NR and styrene butadiene rubber (SBR) were prepared via the conventional mechanical blending method. The effects of the rubber components on the compression set, compression fatigue temperature rising and the thermal oxidative aging properties of the NR/SBR blend composites were investigated. Meanwhile, the dynamic mechanical thermal analyzer and rubber processing analyzer were used to characterize the dynamic viscoelasticity of the NR/SBR blend composites. It was shown that, with the increase in the SBR ratio, the vulcanization rate of the composites increased significantly, while the compression fatigue temperature rising of the composites decreased gradually from 47 °C (0% SBR ratio) to 31 °C (50% SBR ratio). The compression set of the composites remained at ~33% when the SBR ratio was no more than 20%, and increased gradually when the SBR ratio was more than 20%. Full article
Show Figures

Figure 1

21 pages, 7872 KB  
Article
Thermomechanical Material Characterization of Polyethylene Terephthalate Glycol with 30% Carbon Fiber for Large-Format Additive Manufacturing of Polymer Structures
by Katie A. Martin, Guillermo A. Riveros, Travis L. Thornell, Zackery B. McClelland, Elton L. Freeman and James T. Stinson
Polymers 2024, 16(13), 1913; https://doi.org/10.3390/polym16131913 - 4 Jul 2024
Cited by 5 | Viewed by 2335
Abstract
Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% [...] Read more.
Large-format additive manufacturing (LFAM) is used to print large-scale polymer structures. Understanding the thermal and mechanical properties of polymers suitable for large-scale extrusion is needed for design and production capabilities. An in-house-built LFAM printer was used to print polyethylene terephthalate glycol with 30% carbon fiber (PETG CF30%) samples for thermomechanical characterization. Thermogravimetric analysis (TGA) shows that the samples were 30% carbon fiber by weight. X-ray microscopy (XRM) and porosity studies find 25% voids/volume for undried material and 1.63% voids/volume for dry material. Differential scanning calorimetry (DSC) shows a glass transition temperature (Tg) of 66 °C, while dynamic mechanical analysis (DMA) found Tg as 82 °C. The rheology indicated that PETG CF30% is a good printing material at 220–250 °C. Bending experiments show an average of 48.5 MPa for flexure strength, while tensile experiments found an average tensile strength of 25.0 MPa at room temperature. Comparison with 3D-printed PLA and PETG from the literature demonstrated that LFAM-printed PETG CF30% had a comparative high Young’s modulus and had similar tensile strength. For design purposes, prints from LFAM should consider both material choice and print parameters, especially when considering large layer heights. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 5448 KB  
Article
All-Cellulose Nanofiber-Based Sustainable Triboelectric Nanogenerators for Enhanced Energy Harvesting
by Mengyao Cao, Yanglei Chen, Jie Sha, Yanglei Xu, Sheng Chen and Feng Xu
Polymers 2024, 16(13), 1784; https://doi.org/10.3390/polym16131784 - 24 Jun 2024
Cited by 9 | Viewed by 3130
Abstract
Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical [...] Read more.
Triboelectric nanogenerators (TENGs) show promising potential in energy harvesting and sensing for various electronic devices in multiple fields. However, the majority of materials currently utilized in TENGs are unrenewable, undegradable, and necessitate complex preparation processes, resulting in restricted performance and durability for practical applications. Here, we propose a strategy that combines straightforward chemical modification and electrospinning techniques to construct all-cellulose nanofiber-based TENGs with substantial power output. By using cellulose acetate (CA) as the raw material, the prepared cellulose membranes (CMs) and fluorinated cellulose membranes (FCMs) with different functional groups and hydrophobic properties are applied as the tribopositive and tribonegative friction layers of FCM/CM-based triboelectric nanogenerators (FC-TENGs), respectively. This approach modulates the microstructure and triboelectric polarity of the friction materials in FC-TENGs, thus enhancing their triboelectric charge densities and contact areas. As a result, the assembled FC-TENGs demonstrate enhanced output performance (94 V, 8.5 µA, and 0.15 W/m2) and exceptional durability in 15,000 cycles. The prepared FC-TENGs with efficient energy harvesting capabilities can be implemented in practical applications to power various electronic devices. Our work strengthens the viability of cellulose-based TENGs for sustainable development and provides novel perspectives on the cost-effective and valuable utilization of cellulose in the future. Full article
(This article belongs to the Special Issue Bio-Based Polymer: Design, Property, and Application)
Show Figures

Figure 1

19 pages, 4178 KB  
Article
Cross-Scale Industrial Manufacturing of Multifunctional Glass Fiber/Epoxy Composite Tubes via a Purposely Modified Filament Winding Production Line
by George Karalis, Lampros Koutsotolis, Angelos Voudouris Itksaras, Thomai Tiriakidi, Nikolaos Tiriakidis, Kosmas Tiriakidis and Alkiviadis S. Paipetis
Polymers 2024, 16(12), 1754; https://doi.org/10.3390/polym16121754 - 20 Jun 2024
Cited by 1 | Viewed by 1631
Abstract
In the present research work is demonstrated a cross-scale manufacturing approach for the production of multifunctional glass fiber reinforced polymer (GFRP) composite tubes with a purposely redesigned filament winding process. Up until now, limited studies have been reported towards the multiscale reinforcement direction [...] Read more.
In the present research work is demonstrated a cross-scale manufacturing approach for the production of multifunctional glass fiber reinforced polymer (GFRP) composite tubes with a purposely redesigned filament winding process. Up until now, limited studies have been reported towards the multiscale reinforcement direction of continuous fibers for the manufacturing of hierarchical composites at the industrial level. This study involved the development of two different multi-walled carbon nanotube (MWCNT) aqueous-based inks, which were employed for the modification of commercial glass fiber (GF) reinforcing tows via a bath coating unit in a pilot production line. The obtained multifunctional GFRP tubes presented a variety of characteristics in relation to their final mechanical, hydrothermal aging, electrical, thermal and thermoelectric properties. Results revealed that the two individual systems exhibited pronounced differences both in crushing behavior and durability performance. Interestingly, for lateral compression the MWCNT coatings comprising a polymeric dispersant minorly affected the mechanical response of the produced tubes. The crashworthiness indicators of the multifunctional tubes displayed a slight 5% variation to the respective reference values, combined with a more ductile behavior. Moreover, regarding the bulk electrical and thermal conductivity values, as well as the Seebeck coefficient factor, the corresponding tubes displayed a variance of 233% and 19% and an opposite semi-conducting sign denoting a p- and n-type character, respectively. Full article
Show Figures

Figure 1

14 pages, 3961 KB  
Article
In Vivo Durability of Polyurethane Insulated Implantable Cardioverter Defibrillator (ICD) Leads
by Anmar Salih and Tarun Goswami
Polymers 2024, 16(12), 1722; https://doi.org/10.3390/polym16121722 - 17 Jun 2024
Viewed by 2142
Abstract
The 6935M Sprint Quattro Secure S and 6947M Sprint Quattro Secure are high voltage leads designed to administer a maximum of 40 joules of energy for terminating ventricular tachycardia or ventricular fibrillation. Both leads utilize silicone insulation and a polyurethane outer coating. The [...] Read more.
The 6935M Sprint Quattro Secure S and 6947M Sprint Quattro Secure are high voltage leads designed to administer a maximum of 40 joules of energy for terminating ventricular tachycardia or ventricular fibrillation. Both leads utilize silicone insulation and a polyurethane outer coating. The inner coil is shielded with polytetrafluoroethylene (PTFE) tubing, while other conductors are enveloped in ethylene tetrafluoroethylene (ETFE), contributing to the structural integrity and functionality of these leads. Polyurethane is a preferred material for the outer insulation of cardiac leads due to its flexibility and biocompatibility, while silicone rubber ensures chemical stability within the body, minimizing inflammatory or rejection responses. Thirteen implantable cardioverter defibrillator (ICD) leads were obtained from the Wright State University Anatomical Gift Program. The as-received devices exhibited varied in vivo implantation durations ranging from less than a month to 89 months, with an average in vivo duration of 41 ± 27 months. Tests were conducted using the Test Resources Q series system, ensuring compliance with ASTM Standard D 1708-02a and ASTM Standard D 412-06a. During testing, a load was applied to the intact lead, with careful inspection for surface defects before each test. Results of load to failure, percentage elongation, percentage elongation at 5 N, ultimate tensile strength, and modulus of elasticity were calculated. The findings revealed no significant differences in these parameters across all in vivo exposure durations. The residual properties of these ICD leads demonstrated remarkable stability and performance over a wide range of in vivo exposure durations, with no statistically significant degradation or performance changes observed. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 2026 KB  
Review
Nanocellulose: The Ultimate Green Aqueous Dispersant for Nanomaterials
by Víctor Calvo, Carlos Martínez-Barón, Laura Fuentes, Wolfgang K. Maser, Ana M. Benito and José M. González-Domínguez
Polymers 2024, 16(12), 1664; https://doi.org/10.3390/polym16121664 - 12 Jun 2024
Cited by 5 | Viewed by 3266
Abstract
Nanocellulose, a nanoscale derivative from renewable biomass sources, possesses remarkable colloidal properties in water, mechanical strength, and biocompatibility. It emerges as a promising bio-based dispersing agent for various nanomaterials in water. This mini-review explores the interaction between cellulose nanomaterials (nanocrystals or nanofibers) and [...] Read more.
Nanocellulose, a nanoscale derivative from renewable biomass sources, possesses remarkable colloidal properties in water, mechanical strength, and biocompatibility. It emerges as a promising bio-based dispersing agent for various nanomaterials in water. This mini-review explores the interaction between cellulose nanomaterials (nanocrystals or nanofibers) and water, elucidating how this may enable their potential as an eco-friendly dispersing agent. We explore the potential of nanocellulose derived from top-down processes, nanocrystals, and nanofibers for dispersing carbon nanomaterials, semiconducting oxide nanoparticles, and other nanomaterials in water. We also highlight its advantages over traditional methods by not only effectively dispersing those nanomaterials but also potentially eliminating the need for further chemical treatments or supporting stabilizers. This not only preserves the exceptional properties of nanomaterials in aqueous dispersion, but may even lead to the emergence of novel hybrid functionalities. Overall, this mini-review underscores the remarkable versatility of nanocellulose as a green dispersing agent for a variety of nanomaterials, inspiring further research to expand its potential to other nanomaterials and applications. Full article
Show Figures

Graphical abstract

25 pages, 4203 KB  
Article
Prediction of Short- to Long-Term Cyclic Deformation Behavior and Fatigue Life of Polymers
by Thierry Barriere, Stani Carbillet, Xavier Gabrion and Sami Holopainen
Polymers 2024, 16(12), 1640; https://doi.org/10.3390/polym16121640 - 10 Jun 2024
Cited by 3 | Viewed by 2688
Abstract
The prediction of mechanical behavior and fatigue life is of major importance for design and for replacing costly and time-consuming tests. The proposed approach for polymers is a combination of a fatigue model and a governing constitutive model, which is formulated using the [...] Read more.
The prediction of mechanical behavior and fatigue life is of major importance for design and for replacing costly and time-consuming tests. The proposed approach for polymers is a combination of a fatigue model and a governing constitutive model, which is formulated using the Haward–Thackray viscoplastic model (1968) and is capable of capturing large deformations. The fatigue model integrates high- and low-cycle fatigue and is based on the concept of damage evolution and a moving endurance surface in the stress space, therefore memorizing the load history without requesting vague cycle-counting approaches. The proposed approach is applicable for materials in which the fatigue development is ductile, i.e., damage during the formation of microcracks controls most of the fatigue life (up to 90%). Moreover, damage evolution shows a certain asymptote at the ultimate of the low-cycle fatigue, a second asymptote at the ultimate of the high-cycle fatigue (which is near zero), and a curvature of how rapidly the transition between the asymptotes is reached. An interesting matter is that similar to metals, many polymers satisfy these constraints. Therefore, all the model parameters for fatigue can be given in terms of the Basquin and Coffin–Manson model parameters, i.e., satisfying well-defined parameters. Full article
(This article belongs to the Special Issue Computational and Experimental Approaches in Polymeric Materials)
Show Figures

Figure 1

16 pages, 4872 KB  
Article
Active Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Films Containing Phenolic Compounds with Different Molecular Structures
by Carla Ivonne La Fuente Arias, Chelo González-Martínez and Amparo Chiralt
Polymers 2024, 16(11), 1574; https://doi.org/10.3390/polym16111574 - 2 Jun 2024
Cited by 10 | Viewed by 2226
Abstract
To obtain more sustainable and active food packaging materials, PHBV films containing 5% wt. of phenolic compounds with different molecular structures (ferulic acid, vanillin, and catechin) and proved antioxidant and antimicrobial properties were obtained by melt blending and compression molding. These were characterized [...] Read more.
To obtain more sustainable and active food packaging materials, PHBV films containing 5% wt. of phenolic compounds with different molecular structures (ferulic acid, vanillin, and catechin) and proved antioxidant and antimicrobial properties were obtained by melt blending and compression molding. These were characterized by their structural, mechanical, barrier, and optical properties, as well as the polymer crystallization, thermal stability, and component migration in different food simulants. Phenolic compounds were homogenously integrated within the polymer matrix, affecting the film properties differently. Ferulic acid, and mainly catechin, had an anti-plasticizing effect (increasing the polymer glass transition temperature), decreasing the film extensibility and the resistance to breaking, with slight changes in the elastic modulus. In contrast, vanillin provoked a plasticizing effect, decreasing the elastic modulus without notable changes in the film extensibility while increasing the water vapor permeability. All phenolic compounds, mainly catechin, improved the oxygen barrier capacity of PHBV films and interfered with the polymer crystallization, reducing the melting point and crystallinity degree. The thermal stability of the material was little affected by the incorporation of phenols. The migration of passive components of the different PHBV films was lower than the overall migration limit in every simulant. Phenolic compounds were released to a different extent depending on their thermo-sensitivity, which affected their final content in the film, their bonding forces in the polymer matrix, and the simulant polarity. Their effective release in real foods will determine their active action for food preservation. Catechin was the best preserved, while ferulic acid was the most released. Full article
Show Figures

Figure 1

22 pages, 6589 KB  
Article
Supercritical Impregnation of PETG with Olea europaea Leaf Extract: Influence of Operational Parameters on Expansion Degree, Antioxidant and Mechanical Properties
by Noelia D. Machado, José E. Mosquera, Cristina Cejudo-Bastante, María L. Goñi, Raquel E. Martini, Nicolás A. Gañán, Casimiro Mantell-Serrano and Lourdes Casas-Cardoso
Polymers 2024, 16(11), 1567; https://doi.org/10.3390/polym16111567 - 1 Jun 2024
Cited by 7 | Viewed by 1605
Abstract
PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the [...] Read more.
PETG (poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)) is an amorphous copolymer, biocompatible, recyclable, and versatile. Nowadays, it is being actively researched for biomedical applications. However, proposals of PETG as a platform for the loading of bioactive compounds from natural extract are scarce, as well as the effect of the supercritical impregnation on this polymer. In this work, the supercritical impregnation of PETG filaments with Olea europaea leaf extract was investigated, evaluating the effect of pressure (100–400 bar), temperature (35–55 °C), and depressurization rate (5–50 bar min−1) on the expansion degree, antioxidant activity, and mechanical properties of the resulting filaments. PETG expansion degree ranged from ~3 to 120%, with antioxidant loading ranging from 2.28 to 17.96 g per 100 g of polymer, corresponding to oxidation inhibition values of 7.65 and 66.55%, respectively. The temperature and the binary interaction between pressure and depressurization rate most affected these properties. The mechanical properties of PETG filaments depended greatly on process variables. Tensile strength values were similar or lower than the untreated filaments. Young’s modulus and elongation at break values decreased below ~1000 MPa and ~10%, respectively, after the scCO2 treatment and impregnation. The extent of this decrease depended on the supercritical operational parameters. Therefore, filaments with higher antioxidant activity and different expansion degrees and mechanical properties were obtained by adjusting the supercritical processing conditions. Full article
(This article belongs to the Special Issue Additive Manufacturing of (Bio) Polymeric Materials)
Show Figures

Figure 1

11 pages, 1813 KB  
Article
Enhanced Thermal and Mechanical Properties of Cardanol Epoxy/Clay-Based Nanocomposite through Girard’s Reagent
by Ji Xu, Lingxiao Jia, Qixin Lan and Daheng Wu
Polymers 2024, 16(11), 1528; https://doi.org/10.3390/polym16111528 - 29 May 2024
Viewed by 1398
Abstract
The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility [...] Read more.
The green and environmentally friendly cardanol epoxy resin has a bright application prospect, but its insufficient thermal/mechanical properties seriously hinder its application. Adding nanoclay to polymer matrix is an effective method to enhance the thermal/mechanical properties of material, but the dispersion and compatibility of nanoclay in epoxy resin remain to be solved. In this work, active Girard’s reagent clay (PG-clay) and non-active Girard’s reagent clay (NG-clay) were prepared by using acethydrazide trimethylammonium chloride (Girard’s reagent) as the modifier, and cardanol epoxy resin/G-clay nanocomposites were synthesized by the “clay slurry composite method”. The results showed that both PG-clay and NG-clay were dispersed in the epoxy matrix in the form of random exfoliation/intercalation, which effectively improved the thermal/mechanical properties of the composites. Tg of the cardanol epoxy resin has raised from 19.8 °C to 38.1 °C (4 wt.% PG-clay). When the mass fraction of clay is 4%, the tensile strength of the non-reactive NG-clay increases by 128%, and the elongation at break also increases by 101%. Simultaneously, the active PG-clay can participate in the curing reaction of epoxy resin due to the amino group, forming a chemical bond between the clay layer and the resin matrix and establishing a strong interfacial force. The tensile strength of the composite is increased by 970%, and the elongation at break is also increased by 428%. This research demonstrates that the cardanol epoxy resin/G-clay nanocomposite stands as a highly promising candidate for bio-based epoxy resin materials. Full article
(This article belongs to the Special Issue New Progress in Polymer Self-Assembly)
Show Figures

Figure 1

18 pages, 8533 KB  
Article
Liquid Crystal Orientation and Shape Optimization for the Active Response of Liquid Crystal Elastomers
by Jorge Luis Barrera, Caitlyn Cook, Elaine Lee, Kenneth Swartz and Daniel Tortorelli
Polymers 2024, 16(10), 1425; https://doi.org/10.3390/polym16101425 - 17 May 2024
Cited by 4 | Viewed by 2393
Abstract
Liquid crystal elastomers (LCEs) are responsive materials that can undergo large reversible deformations upon exposure to external stimuli, such as electrical and thermal fields. Controlling the alignment of their liquid crystals mesogens to achieve desired shape changes unlocks a new design paradigm that [...] Read more.
Liquid crystal elastomers (LCEs) are responsive materials that can undergo large reversible deformations upon exposure to external stimuli, such as electrical and thermal fields. Controlling the alignment of their liquid crystals mesogens to achieve desired shape changes unlocks a new design paradigm that is unavailable when using traditional materials. While experimental measurements can provide valuable insights into their behavior, computational analysis is essential to exploit their full potential. Accurate simulation is not, however, the end goal; rather, it is the means to achieve their optimal design. Such design optimization problems are best solved with algorithms that require gradients, i.e., sensitivities, of the cost and constraint functions with respect to the design parameters, to efficiently traverse the design space. In this work, a nonlinear LCE model and adjoint sensitivity analysis are implemented in a scalable and flexible finite element-based open source framework and integrated into a gradient-based design optimization tool. To display the versatility of the computational framework, LCE design problems that optimize both the material, i.e., liquid crystal orientation, and structural shape to reach a target actuated shapes or maximize energy absorption are solved. Multiple parameterizations, customized to address fabrication limitations, are investigated in both 2D and 3D. The case studies are followed by a discussion on the simulation and design optimization hurdles, as well as potential avenues for improving the robustness of similar computational frameworks for applications of interest. Full article
(This article belongs to the Special Issue Modeling and Simulations of Smart and Responsive Polymers)
Show Figures

Figure 1

12 pages, 2875 KB  
Article
Polyvinylalcohol Composite Filled with Carbon Dots Produced by Laser Ablation in Liquids
by Mariapompea Cutroneo, Letteria Silipigni, Petr Malinsky, Petr Slepicka, Domenico Franco and Lorenzo Torrisi
Polymers 2024, 16(10), 1390; https://doi.org/10.3390/polym16101390 - 13 May 2024
Cited by 8 | Viewed by 2432
Abstract
Carbon dots (CDs), owing to their excellent photoluminescent features, have been extensively studied for physics preparation methods and for biomedical and optoelectronic device applications. The assessment of the applicability of CDs in the production of luminescent polymeric composites used in LEDs, displays, sensors, [...] Read more.
Carbon dots (CDs), owing to their excellent photoluminescent features, have been extensively studied for physics preparation methods and for biomedical and optoelectronic device applications. The assessment of the applicability of CDs in the production of luminescent polymeric composites used in LEDs, displays, sensors, and wearable devices is being pursued. The present study reports on an original, environmentally friendly, and low-cost route for the production of carbon dots with an average size of 4 nm by laser ablation in liquid. Jointly, to prove the significance of the study for a wide range of applications, a free-standing flexible polyvinyl alcohol (PVA) composite containing photoluminescent carbon dots was manufactured. CDs were prepared using targets of porose charcoal with a density of 0.271 g/cm3 placed in phosphate-buffered saline (PBS) liquid solution and irradiated for 30 min by pulsed IR diode laser. The optical properties of the obtained suspension containing carbon dots were studied with UV-ViS and FTIR spectroscopies. The photoluminescence of the produced carbon dots was confirmed by the emission peak at 480 nm in the luminescence spectrum. A narrow luminescence band with a full width at half-maximum (FWHM) of less than 40 nm could be an asset in spectral emission analysis in different applications. Atomic force microscopy confirms the feasibility of manufacturing CDs in clean and biocompatible environments, paving the way for an easier and faster production route, crucial for their wider applicability. Full article
(This article belongs to the Special Issue Applications of Lasers in Polymer Science)
Show Figures

Graphical abstract

12 pages, 3835 KB  
Article
Scleroglucan-Based Foam Incorporating Recycled Rigid Polyurethane Waste for Novel Insulation Material Production
by Luca Cozzarini, Lucia Marsich and Alessio Ferluga
Polymers 2024, 16(10), 1360; https://doi.org/10.3390/polym16101360 - 10 May 2024
Cited by 1 | Viewed by 2116
Abstract
This study details the synthesis and performance evaluation of a novel lightweight thermal and acoustic insulation material, resulting from the combination of a scleroglucan-based hydrogel and recycled rigid polyurethane waste powder. Through a sublimation-driven water-removal process, a porous three-dimensional network structure is formed, [...] Read more.
This study details the synthesis and performance evaluation of a novel lightweight thermal and acoustic insulation material, resulting from the combination of a scleroglucan-based hydrogel and recycled rigid polyurethane waste powder. Through a sublimation-driven water-removal process, a porous three-dimensional network structure is formed, showcasing notable thermal and acoustic insulation properties. Experimental data are presented to highlight the material’s performance, including comparisons with commercially available mineral wool and polymeric foams. This material versatility is demonstrated through tunable mechanical, thermal and acoustic characteristics, achieved by strategically adjusting the concentration of the biopolymer and additives. This adaptability positions the material as a promising candidate for different insulation applications. Addressing environmental concerns related to rigid polyurethane waste disposal, the study contributes to the circular economy. Full article
(This article belongs to the Special Issue Advances in Plastics Industry)
Show Figures

Figure 1

19 pages, 2782 KB  
Article
Mechanical, Flame-Retardant and Dielectric Properties of Intumescent Flame Retardant/Glass Fiber-Reinforced Polypropylene through a Novel Dispersed Distribution Mode
by Jingwen Li, Yiliang Sun, Boming Zhang and Guocheng Qi
Polymers 2024, 16(10), 1341; https://doi.org/10.3390/polym16101341 - 9 May 2024
Cited by 3 | Viewed by 2316
Abstract
The application of continuous glass fiber-reinforced polypropylene thermoplastic composites (GF/PP) is limited due to the inadequate flame retardancy of the polypropylene (PP) matrix. Apart from altering the composition of the flame retardants, the distribution modes of flame retardants also impact material performance. In [...] Read more.
The application of continuous glass fiber-reinforced polypropylene thermoplastic composites (GF/PP) is limited due to the inadequate flame retardancy of the polypropylene (PP) matrix. Apart from altering the composition of the flame retardants, the distribution modes of flame retardants also impact material performance. In this study, an alternative approach involving non-uniform distribution is proposed, namely, dispersed distribution, in which non-flame-retardant-content layers (NFRLs) and/or low-flame-retardant-content layers (LFRLs) are dispersed among high-flame-retardant-content layers (HFRLs). The mechanical, flame retardant and dielectric properties of GF/PP with intumescent flame retardant (IFR/GF/PP) are investigated comparatively under uniform, gradient, and dispersed distributions of the flame retardants. The results demonstrate that non-uniform distribution exhibits superior flame retardant performance compared to uniform distribution. Dispersed distribution enables IFR/GF/PP to attain enhanced mechanical properties and reduced dielectric constants while maintaining excellent flame-retardant properties. Full article
(This article belongs to the Special Issue Recent Advances in Flame Retardant Polymers)
Show Figures

Graphical abstract

12 pages, 3862 KB  
Article
In Situ Changes in Mechanical Properties Based on Gas Saturation Inside Pressure Vessels
by Kwan Hoon Kim, Jae Hoo Kim, Dong Hwan Lim, Byung Chul Kwon, Jin Hong, Ho Sub Yoon and Sung Woon Cha
Polymers 2024, 16(9), 1276; https://doi.org/10.3390/polym16091276 - 2 May 2024
Cited by 4 | Viewed by 1353
Abstract
In previous studies, difficulties were encountered in measuring changes within high-pressure vessels owing to limitations such as sensor connectors and sensor failures under high-pressure conditions. In addition, polymer–gas mixtures experience instantaneous gas desorption upon exiting high-pressure vessels owing to pressure differentials, leading to [...] Read more.
In previous studies, difficulties were encountered in measuring changes within high-pressure vessels owing to limitations such as sensor connectors and sensor failures under high-pressure conditions. In addition, polymer–gas mixtures experience instantaneous gas desorption upon exiting high-pressure vessels owing to pressure differentials, leading to measurement errors. In this study, a device using magnetic sensors was developed to measure the real-time changes in gas-saturated polymers inside pressure vessels. Experiments on polymethyl methacrylate gas adsorption were conducted with parameters including pressure at 5 MPa and temperatures ranging from −20 to 40 °C for 60 and 180 min. It was observed that at −20 °C, the maximum magnetic field force density and deflection were 391.53 μT and 5.83 mm, respectively, whereas at 40 °C, deflection did not occur, with a value of 321.79 μT. Based on gas saturation experiments, a new model for deflection in high-pressure atmospheres is proposed. Additionally, an ANSYS analysis was conducted to predict the changes in Young’s modulus based on gas saturation. In previous studies, mechanical properties were measured outside the pressure vessel, resulting in an error due to a pressure difference, while the proposed method is characterized by the ability to directly measure polymer behavior according to gas saturation in high-pressure vessels using a magnetic sensor in real time. Therefore, it is possible to predict polymer behavior, making it easy to control variables in high-pressure polymer processes. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

21 pages, 28016 KB  
Article
Biodegradation Study of Styrene–Butadiene Composites with Incorporated Arthrospira platensis Biomass
by Marius Bumbac, Cristina Mihaela Nicolescu, Traian Zaharescu, Ion Valentin Gurgu, Costel Bumbac, Elena Elisabeta Manea, Ioana Alexandra Ionescu, Bogdan-Catalin Serban, Octavian Buiu and Crinela Dumitrescu
Polymers 2024, 16(9), 1218; https://doi.org/10.3390/polym16091218 - 26 Apr 2024
Cited by 1 | Viewed by 1904
Abstract
The preparation of polymer composites that incorporate material of a biogenic nature in the polymer matrices may lead to a reduction in fossil polymer consumption and a potentially higher biodegradability. Furthermore, microalgae biomass as biogenic filler has the advantage of fast growth and [...] Read more.
The preparation of polymer composites that incorporate material of a biogenic nature in the polymer matrices may lead to a reduction in fossil polymer consumption and a potentially higher biodegradability. Furthermore, microalgae biomass as biogenic filler has the advantage of fast growth and high tolerance to different types of culture media with higher production yields than those provided by the biomass of terrestrial crops. On the other hand, algal biomass can be a secondary product in wastewater treatment processes. For the present study, an SBS polymer composite (SBSC) containing 25% (w/w) copolymer SBS1 (linear copolymer: 30% styrene and 70% butadiene), 50% (w/w) copolymer SBS2 (linear copolymer: 40% styrene and 60% butadiene), and 25% (w/w) paraffin oil was prepared. Arthrospira platensis biomass (moisture content 6.0 ± 0.5%) was incorporated into the SBSC in 5, 10, 20, and 30% (w/w) ratios to obtain polymer composites with spirulina biomass. For the biodegradation studies, the ISO 14855-1:2012(E) standard was applied, with slight changes, as per the specificity of our experiments. The degradation of the studied materials was followed by quantitatively monitoring the CO2 resulting from the degradation process and captured by absorption in NaOH solution 0.5 mol/L. The structural and morphological changes induced by the industrial composting test on the materials were followed by physical–mechanical, FTIR, SEM, and DSC analysis. The obtained results were compared to create a picture of the material transformation during the composting period. Thus, the collected data indicate two biodegradation processes, of the polymer and the biomass, which take place at the same time at different rates, which influence each other. On the other hand, it is found that the material becomes less ordered, with a sponge-like morphology; the increase in the percentage of biomass leads to an advanced degree of degradation of the material. The FTIR analysis data suggest the possibility of the formation of peptide bonds between the aromatic nuclei in the styrene block and the molecular residues resulting from biomass biodegradation. It seems that in industrial composting conditions, the area of the polystyrene blocks from the SBS-based composite is preferentially transformed in the process. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites: Fabrication and Applications II)
Show Figures

Figure 1

17 pages, 10597 KB  
Article
Effect of Carbon Nanofiber Distribution on Mechanical Properties of Injection-Molded Aramid-Fiber-Reinforced Polypropylene
by Tetsuo Takayama, Shunsuke Kobayashi, Yuuki Yuasa and Quan Jiang
Polymers 2024, 16(8), 1110; https://doi.org/10.3390/polym16081110 - 16 Apr 2024
Cited by 7 | Viewed by 2364
Abstract
The mechanical recycling of discarded plastic products as resources for environmental preservation has recently gained research attention. In this context, it is necessary to use waste materials for fiber-reinforced thermoplastics (FRTP). Glass and carbon fibers are often damaged by shear and compression during [...] Read more.
The mechanical recycling of discarded plastic products as resources for environmental preservation has recently gained research attention. In this context, it is necessary to use waste materials for fiber-reinforced thermoplastics (FRTP). Glass and carbon fibers are often damaged by shear and compression during melt-forming processes. To achieve a sustainable society, it is necessary for thermal recycling to produce minimal to no residue and for mechanical recycling to maintain the length of fibers used in FRTP to preserve their performance as a reinforcing agent. Aramid fibers (AFs) do not shorten during the melt-molding process, and their composites have excellent impact strength. On the other hand, plastics reinforced with glass or carbon fibers are reported to have a superior strength and modulus of elasticity compared to aramid fibers. This study investigates the dispersion of a carbon nanofiber (CNF), a whisker, as the third component in aramid-fiber-reinforced polypropylene (PP/AF). The results and discussion sections demonstrate how the dispersion of CNF in PP/AF can enhance the mechanical properties of injection-molded products without compromising their impact resistance. The proposed composition will have excellent material recyclability and initial mechanical properties compared to glass-fiber-reinforced thermoplastics. Full article
Show Figures

Graphical abstract

19 pages, 9177 KB  
Article
Extraction of Mechanical Parameters via Molecular Dynamics Simulation: Application to Polyimides
by Philipp Rosenauer, Christoph Kratzer, Silvia Larisegger and Stefan Radl
Polymers 2024, 16(6), 813; https://doi.org/10.3390/polym16060813 - 14 Mar 2024
Cited by 8 | Viewed by 2762
Abstract
Polyimides feature a vast number of industrial applications due to their high thermal stability and insulation properties. These polymers exhibit an exceptional combination of thermal stability and mechanical toughness, which allows the semiconductor industry to use them as a mechanical stress buffer. Here, [...] Read more.
Polyimides feature a vast number of industrial applications due to their high thermal stability and insulation properties. These polymers exhibit an exceptional combination of thermal stability and mechanical toughness, which allows the semiconductor industry to use them as a mechanical stress buffer. Here, we perform all-atom molecular dynamics (MD) simulations for such materials to assess their predictive capability with respect to their mechanical properties. Specifically, we demonstrate that the OPLS-AA force field can be used to successfully describe an often-used polyimide (i.e., Kapton®) with respect to its Young’s modulus and Poisson’s ratio. Two different modes to extract these mechanical properties from MD simulations are presented. In particular, our continuous deformation mode simulations almost perfectly replicate the results from real-world experimental data and are in line with predictions using other MD force fields. Our thorough investigation of Kapton® also includes an analysis of the anisotropy of normal stresses, as well as the effect of simulation properties on the predicted Young’s moduli. Furthermore, the polyimide pyromellitic dianhydride/2-(4-aminophenyl)-1H-benzimidazole-5-amine (PMDA-BIA) was investigated to draw a more thorough picture of the usability of the OPLS-AA force field for polyimides. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulation of Polymeric Materials)
Show Figures

Figure 1

14 pages, 5456 KB  
Article
Press Conduction Welding for Secondary Bonding of Aircraft Skin/Stiffener Assemblies Using Carbon Fiber/PEKK Thermoplastic Composites and PEI Adhesive
by Hyunseok Choi, Chan-Joo Lee, Yong-Jun Jeon, Woo-Chun Choi and Dongearn Kim
Polymers 2024, 16(6), 750; https://doi.org/10.3390/polym16060750 - 9 Mar 2024
Viewed by 2106
Abstract
This study investigates the secondary bonding of aircraft skin/stiffener assemblies using press conduction welding with carbon fiber/polyetherketoneketone thermoplastic composites and polyetherimide adhesive. Recognizing the challenges posed by conventional welding methods in maintaining material integrity and uniformity, this research explores an alternative methodology that [...] Read more.
This study investigates the secondary bonding of aircraft skin/stiffener assemblies using press conduction welding with carbon fiber/polyetherketoneketone thermoplastic composites and polyetherimide adhesive. Recognizing the challenges posed by conventional welding methods in maintaining material integrity and uniformity, this research explores an alternative methodology that mitigates these issues while ensuring high-strength bonds. The press conduction welding parameters were selected based on single-lap shear tests and applied in the bonding of skin and omega stiffener components. The temperature range was determined using differential scanning calorimetry. The pressure was held at 1 MPa for 180 s. The welding temperature that produced a high-bonding strength was identified experimentally; these key variables were then used in the welding process of the skin and omega stiffener. By analyzing how the fibers tear and the effectiveness of interdiffusion between the plies, we were able to gain insights into the bonding strength and fractured surface. The findings suggest that press conduction welding provides a viable route for secondary bonding in thermoplastic composite structures, highlighting its advantages in terms of processing efficiency and integrity. This study contributes to the understanding of the mechanical behaviors of bonded joints and underscores the significance of temperature control in the welding process. Full article
Show Figures

Figure 1

14 pages, 8160 KB  
Communication
Fabrication and Characterization of Electrospun Cu-Doped TiO2 Nanofibers and Enhancement of Photocatalytic Performance Depending on Cu Content and Electron Beam Irradiation
by So-Hyeon Lee, Kyeong-Han Na, Jae-Yoon Kim, Han-Sol Yoon, HyukSu Han and Won-Youl Choi
Polymers 2024, 16(5), 694; https://doi.org/10.3390/polym16050694 - 4 Mar 2024
Cited by 1 | Viewed by 2245
Abstract
Titanium dioxide (TiO₂) is a widely studied material with many attractive properties such as its photocatalytic features. However, its commercial use is limited due to issues such as deactivation in the visible spectrum caused by its wide bandgap and the short lifetime of [...] Read more.
Titanium dioxide (TiO₂) is a widely studied material with many attractive properties such as its photocatalytic features. However, its commercial use is limited due to issues such as deactivation in the visible spectrum caused by its wide bandgap and the short lifetime of photo-excited charge carriers. To overcome these challenges, various modifications could be considered. In this study, we investigated copper doping and electron beam treatment. As-spun TiO2 nanofibers were fabricated by electrospinning a TiO2 sol, which obtained viscosity through a polyvinylpyrrolidone (PVP) matrix. Cu-doped TiO2 nanofibers with varying dopant concentrations were synthesized by adding copper salts. Then, the as-spun nanofibers were calcined for crystallization. To evaluate photocatalytic performance, a photodegradation test of methylene blue aqueous solution was performed for 6 h. Methylene blue concentration was measured over time using UV-Vis spectroscopy. The results showed that Cu doping at an appropriate concentration and electron-beam irradiation showed improved photocatalytic efficiency compared to bare TiO2 nanofibers. When the molar ratio of Cu/Ti was 0.05%, photodegradation rate was highest, which was 10.39% higher than that of bare TiO2. As a result of additional electron-beam treatment of this sample, photocatalytic efficiency improved up to 8.93% compared to samples without electron-beam treatment. Full article
(This article belongs to the Special Issue Electrospun Nanofibers: Current Advances and Future Perspective)
Show Figures

Graphical abstract

13 pages, 2480 KB  
Article
Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding
by Philipp Zimmermann, Silven Frohs, Martin Wiesing, Kamal Meena and Jürgen Nagel
Polymers 2024, 16(5), 644; https://doi.org/10.3390/polym16050644 - 27 Feb 2024
Viewed by 1742
Abstract
This paper uses a very effective way for surface modification of thermoplastic polymers during moulding. It is based on a grafting reaction between a thin layer of a functional polymer, deposited on a substrate in advance, and a polymer melt. In this paper, [...] Read more.
This paper uses a very effective way for surface modification of thermoplastic polymers during moulding. It is based on a grafting reaction between a thin layer of a functional polymer, deposited on a substrate in advance, and a polymer melt. In this paper, a glycol-modified polyethylene terephthalate (PETG) that was brought in contact with a polyethyleneimine layer during fused filament fabrication is investigated. The focus of this paper is the investigation of the reaction product. Grafting was realised by the formation of stable amide bonds by amidation of ester groups in the main chain of a PETG. XPS investigations revealed that the conversion of amino groups was very high, the distribution was even, and the quantity of amino groups per polyester surface area was still very high. The surface properties of the produced polyester part were mainly characterised by polyethyleneimine. The grafting was able to resist several cycles of extraction in alkaline solutions. The stability was only limited by saponification of the polyester. The degree of surface modification was dependent on the molar mass of polyethyleneimine. This could be rationalised, because grafting only occurred with the one polyethyleneimine molecule that is in close vicinity to the polyester surface when both components come in contact. Fused deposition modelling was chosen as the model process with control over each processing step. However, any other moulding process may be applied, particularly injection moulding for mass production. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Coatings and Surfaces)
Show Figures

Figure 1

18 pages, 1461 KB  
Article
Mucoadhesive Polymeric Polyologels Designed for the Treatment of Periodontal and Related Diseases of the Oral Cavity
by Gavin P. Andrews, Thomas Laverty and David S. Jones
Polymers 2024, 16(5), 589; https://doi.org/10.3390/polym16050589 - 21 Feb 2024
Cited by 1 | Viewed by 1732
Abstract
The study objective was to design and characterise herein unreported polyologels composed of a range of diol and triol solvents and polyvinyl methyl ether-co-maleic acid (PVM/MA) and, determine their potential suitability for the treatment of periodontal and related diseases in the oral cavity [...] Read more.
The study objective was to design and characterise herein unreported polyologels composed of a range of diol and triol solvents and polyvinyl methyl ether-co-maleic acid (PVM/MA) and, determine their potential suitability for the treatment of periodontal and related diseases in the oral cavity using suitable in vitro methodologies. Polyologel flow and viscoelastic properties were controlled by the choice of solvent and the concentration of polymer. At equivalent polymer concentrations, polyologels prepared with glycerol (a triol) exhibited the greatest elasticity and resistance to deformation. Within the diol solvents (PEG 400, pentane 1,5-diol, propane 1,2-diol, propane 1,3-diol, and ethylene glycol), PEG 400 polyologels possessed the greatest elasticity and resistance to deformation, suggesting the importance of distance of separation between the diol groups. Using Raman spectroscopy bond formation between the polymer carbonyl group and the diol hydroxyl groups was observed. Polyologel mucoadhesion was influenced by viscoelasticity; maximum mucoadhesion was shown by glycerol polyologels at the highest polymer concentration (20% w/w). Similarly, the choice of solvent and concentration of PVM/MA affected the release of tetracycline from the polyologels. The controlled release of tetracycline for at least 10 h was observed for several polyologels, which, in combination with their excellent mucoadhesion and flow properties, offer possibilities for the clinical use of these systems to treat diseases within the oral cavity. Full article
(This article belongs to the Special Issue Polymers Strategies in Dental Therapy)
Show Figures

Figure 1

12 pages, 1255 KB  
Article
Effect of Starch Plasticization on Morphological, Mechanical, Crystalline, Thermal, and Optical Behavior of Poly(butylene adipate-co-terephthalate)/Thermoplastic Starch Composite Films
by Xiaoyan He, Fuhong Zhang, Congcong Li, Weiwei Ding, Yuanyuan Jin, Lisheng Tang and Ran Huang
Polymers 2024, 16(3), 326; https://doi.org/10.3390/polym16030326 - 25 Jan 2024
Cited by 10 | Viewed by 3554
Abstract
Starches plasticized with glycerol/citric acid/stearic acid and tributyl 2-acetylcitrate (ATBC), respectively, were processed with poly (butylene adipate-Co-terephthalate (PBAT) via extrusion and a film-blown process. All the composite films were determined for morphology, mechanical, thermal stability, crystalline, and optical properties. Results show that the [...] Read more.
Starches plasticized with glycerol/citric acid/stearic acid and tributyl 2-acetylcitrate (ATBC), respectively, were processed with poly (butylene adipate-Co-terephthalate (PBAT) via extrusion and a film-blown process. All the composite films were determined for morphology, mechanical, thermal stability, crystalline, and optical properties. Results show that the most improved morphology was in the 30% glycerol plasticized PBAT/thermoplastic starch (TPS) composite films, characterized by the smallest and narrowest distribution of TPS particle sizes and a more uniform dispersion of TPS particles. However, the water absorption of PBAT/TPS composite films plasticized with glycerol surpassed that observed with ATBC as a plasticizer. Mechanical properties indicated insufficient plasticization of the starch crystal structure when using 10% ATBC, 20% ATBC, and 20% glycerol as plasticizers, leading to poor compatibility between PBAT and TPS. This resulted in stress concentration points under external forces, adversely affecting the mechanical properties of the composites. All PBAT/TPS composite films exhibited a negative impact on the initial thermal decomposition temperature compared to PBAT. Additionally, the haze value of PBAT/TPS composite films exceeded 96%, while pure PBAT had a haze value of 47.42%. Films plasticized with 10% ATBC, 20% ATBC, and 20% glycerol displayed lower transmittance values in the visible light region. The increased transmittance of films plasticized with 30% glycerol further demonstrated their superior plasticizing effect compared to other PBAT/TPS composite films. This study provides a simple and feasible method for preparing low-cost PBAT composites, and their extensions are expected to further replace general-purpose plastics in daily applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Bio-Based Polymeric Materials)
Show Figures

Figure 1

21 pages, 5724 KB  
Review
Thermodynamics of the Glassy Polymer State: Equilibrium and Non-Equilibrium Aspects
by Costas Panayiotou
Polymers 2024, 16(2), 298; https://doi.org/10.3390/polym16020298 - 22 Jan 2024
Cited by 4 | Viewed by 2628
Abstract
This work examines, first, the non-equilibrium character of the glassy state of polymer systems and its significance in the development of novel materials for important technological applications. Subsequently, it summarizes the essentials of the generalized lattice fluid approach for the description of this [...] Read more.
This work examines, first, the non-equilibrium character of the glassy state of polymer systems and its significance in the development of novel materials for important technological applications. Subsequently, it summarizes the essentials of the generalized lattice fluid approach for the description of this highly complex non-equilibrium behavior with an approximate and simple, yet analytically powerful formalism. The working equations are derived in a straightforward and consistent manner by clearly defining the universal and specific variables needed to describe the discussed properties. The role of the non-random distribution of molecular species and free volume in the glassy system is also examined, as is the role of strong specific interactions, such as hydrogen-bonding networks. This work also reports examples of applications in a variety of representative systems, including glass densification, retrograde vitrification, increase in glass-transition temperature in hydrogen-bonded polymer mixtures, and hysteresis phenomena in sorption–desorption from glassy polymer matrices. Full article
Show Figures

Figure 1

15 pages, 5982 KB  
Article
Catalyst-Free Amino-Yne Click Reaction: An Efficient Way for Immobilizing Amoxicillin onto Polymeric Surfaces
by Julia Sánchez-Bodón, Maria Diaz-Galbarriatu, Rebeca Sola-Llano, Leire Ruiz-Rubio, José Luis Vilas-Vilela and Isabel Moreno-Benitez
Polymers 2024, 16(2), 246; https://doi.org/10.3390/polym16020246 - 15 Jan 2024
Cited by 3 | Viewed by 2535
Abstract
Surface modifications play a crucial role in enhancing the functionality of biomaterials. Different approaches can be followed in order to achieve the bioconjugation of drugs and biological compounds onto polymer surfaces. In this study, we focused on the immobilization of an amoxicillin antibiotic [...] Read more.
Surface modifications play a crucial role in enhancing the functionality of biomaterials. Different approaches can be followed in order to achieve the bioconjugation of drugs and biological compounds onto polymer surfaces. In this study, we focused on the immobilization of an amoxicillin antibiotic onto the surface of poly-L-lactic acid (PLLA) using a copper-free amino-yne click reaction. The utilization of this reaction allowed for a selective and efficient bioconjugation of the amoxicillin moiety onto the PLLA surface, avoiding copper-related concerns and ensuring biocompatibility. The process involved sequential steps that included surface activation via alkaline hydrolysis followed by an amidation reaction with ethylendiamine, functionalization with propiolic groups, and subsequent conjugation with amoxicillin via a click chemistry approach. Previous amoxicillin immobilization using tryptophan and fluorescent amino acid conjugation was carried out in order to determine the efficacy of the proposed methodology. Characterization techniques such as X-ray photoelectron spectroscopy (XPS), Attenuated Total Reflection (ATR)–Fourier Transform Infrared (FTIR) spectroscopy, surface imaging, water contact angle determination, and spectroscopic analysis confirmed the successful immobilization of both tryptophan and amoxicillin while maintaining the integrity of the PLLA surface. This tailored modification not only exhibited a novel method for surface functionalization but also opens avenues for developing antimicrobial biomaterials with improved drug-loading capacity. Full article
(This article belongs to the Special Issue Biomaterials in Medical Applications II)
Show Figures

Graphical abstract

15 pages, 3109 KB  
Article
Potentiating Gilteritinib Efficacy Using Nanocomplexation with a Hyaluronic Acid–Epigallocatechin Gallate Conjugate
by Ki Hyun Bae, Fritz Lai, Qingfeng Chen and Motoichi Kurisawa
Polymers 2024, 16(2), 225; https://doi.org/10.3390/polym16020225 - 12 Jan 2024
Cited by 2 | Viewed by 2268
Abstract
Acute myeloid leukemia carrying FMS-like tyrosine kinase receptor-3 (FLT3) mutations is a fatal blood cancer with a poor prognosis. Although the FLT3 inhibitor gilteritinib has recently been approved, it still suffers from limited efficacy and relatively high nonresponse rates. In this study, we [...] Read more.
Acute myeloid leukemia carrying FMS-like tyrosine kinase receptor-3 (FLT3) mutations is a fatal blood cancer with a poor prognosis. Although the FLT3 inhibitor gilteritinib has recently been approved, it still suffers from limited efficacy and relatively high nonresponse rates. In this study, we report the potentiation of gilteritinib efficacy using nanocomplexation with a hyaluronic acid–epigallocatechin gallate conjugate. The self-assembly, colloidal stability, and gilteritinib loading capacity of the nanocomplex were characterized by reversed-phase high-performance liquid chromatography and dynamic light scattering technique. Flow cytometric analysis revealed that the nanocomplex efficiently internalized into FLT3-mutated leukemic cells via specific interactions between the surface-exposed hyaluronic acid and CD44 receptor overexpressed on the cells. Moreover, this nanocomplex was found to induce an eradication of the leukemic cells in a synergistic manner by elevating the levels of reactive oxygen species and caspase-3/7 activities more effectively than free gilteritinib. This study may provide a useful strategy to design nanomedicines capable of augmenting the therapeutic efficacy of FLT3 inhibitors for effective leukemia therapy. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 5060 KB  
Article
Gas Permeability through Polyimides: Unraveling the Influence of Free Volume, Intersegmental Distance and Glass Transition Temperature
by Alba Torres, Cenit Soto, Javier Carmona, Bibiana Comesaña-Gandara, Mónica de la Viuda, Laura Palacio, Pedro Prádanos, María Teresa Simorte, Inmaculada Sanz, Raúl Muñoz, Alberto Tena and Antonio Hernández
Polymers 2024, 16(1), 13; https://doi.org/10.3390/polym16010013 - 19 Dec 2023
Cited by 7 | Viewed by 3907
Abstract
The relationships between gas permeability and free volume fraction, intersegmental distance, and glass transition temperature, are investigated. They are analyzed for He, CO2, O2, CH4, and N2 gases and for five similar polyimides with a wide [...] Read more.
The relationships between gas permeability and free volume fraction, intersegmental distance, and glass transition temperature, are investigated. They are analyzed for He, CO2, O2, CH4, and N2 gases and for five similar polyimides with a wide range of permeabilities, from very low to extremely high ones. It has been established here that there is an exponential relationship between permeability and the free volume fraction, and between permeability and the most probable intersegmental distance as measured by WAXS; in both cases, with an exponential coefficient that depends on the kinetic gas diameter as a quadratic polynomial and with a preexponential positive constant. Moreover, it has been proven that the intersegmental distance increases linearly with the free volume fraction. Finally, it has been established that the free volume fraction increases with the glass transition temperature for the polymers tested, and that they depend on each other in an approximate linear way. Full article
(This article belongs to the Special Issue Polymers for Membrane Separation Process)
Show Figures

Graphical abstract

23 pages, 2297 KB  
Article
Bringing Light into the Dark—Overview of Environmental Impacts of Carbon Fiber Production and Potential Levers for Reduction
by Tobias Manuel Prenzel, Andrea Hohmann, Tim Prescher, Kerstin Angerer, Daniel Wehner, Robert Ilg, Tjark von Reden, Klaus Drechsler and Stefan Albrecht
Polymers 2024, 16(1), 12; https://doi.org/10.3390/polym16010012 - 19 Dec 2023
Cited by 13 | Viewed by 12113
Abstract
Carbon fibers (CFs) are a crucial material for lightweight structures with advanced mechanical performance. However, there is still a paucity of detailed understanding regarding the environmental impacts of production. Previously, mostly singled-out scenarios for CF production have been assessed, often based on scarce [...] Read more.
Carbon fibers (CFs) are a crucial material for lightweight structures with advanced mechanical performance. However, there is still a paucity of detailed understanding regarding the environmental impacts of production. Previously, mostly singled-out scenarios for CF production have been assessed, often based on scarce transparent inventory data. To expand the current knowledge and create a robust database for future evaluation, a life cycle assessment (LCA) was carried out. To this end, a detailed industry-approved LCI is published, which also proved plausible against the literature. Subsequently, based on a global scenario representing the market averages for precursor and CF production, the most relevant contributors to climate change (EF3.1 climate change, total) and the depletion of fossil energy carriers (EF3.1 resource use, fossil) were identified. The energy consumption in CF manufacturing was found to be responsible for 59% of the climate change and 48% of the fossil resource use. To enable a differentiated discussion of manufacturing locations and process energy consumption, 24 distinct scenarios were assessed. The findings demonstrate the significant dependence of the results on the scenarios’ boundary conditions: climate change ranges from 13.0 to 34.1 kg CO2 eq./kg CF and resource use from 262.3 to 497.9 MJ/kg CF. Through the investigated scenarios, the relevant reduction potentials were identified. The presented results help close an existing data gap for high-quality, regionalized, and technology-specific LCA results for the production of CF. Full article
(This article belongs to the Special Issue Manufacturing of Polymer-Matrix Composites)
Show Figures

Figure 1

14 pages, 5169 KB  
Article
Evaluation of the Mechanical and Tribological Behavior of Polyether Ether Ketone Fiber-Reinforced Resin-Based Friction Materials Fabricated by Wet Granulation
by Lekai Li, Zichao Ma, Guoqin Liu, Wei Song, Lili Ren, Shengwang Yuan, Xiao Yang, Qifeng Zhang and Yunhai Ma
Polymers 2023, 15(24), 4732; https://doi.org/10.3390/polym15244732 - 18 Dec 2023
Cited by 3 | Viewed by 1893
Abstract
Resin-based friction materials (RBFMs) strengthened by polyether ether ketone (PEEK) fiber were designed and prepared in this study. Specimens incorporating PEEK fiber of 2–8 wt.% were fabricated based on wet granulation, and then the effects of the PEEK fiber content on the mechanical [...] Read more.
Resin-based friction materials (RBFMs) strengthened by polyether ether ketone (PEEK) fiber were designed and prepared in this study. Specimens incorporating PEEK fiber of 2–8 wt.% were fabricated based on wet granulation, and then the effects of the PEEK fiber content on the mechanical and tribological properties of RBFMs were systematically investigated. The results showed that PEEK fiber can sense the braking temperature and then effectively regulate the comprehensive properties of RBFMs. The specimen incorporating 6 wt.% PEEK fiber obtained the optimal comprehensive performance with a stable friction coefficient (COF), excellent fade resistance and recovery properties, and better wear resistance. The worn surface was inspected using a scanning electron microscope. After the friction–wear test, the specimen with 6 wt.% PEEK fiber presented a number of primary and secondary plateaus and a reduced number of pits with wear debris on the worn surface. The study indicated that PEEK fiber could not only enhance the mechanical and tribological properties of RBFMs at low temperatures because of their high strength and self-lubrication but also adhere to wear debris to reduce abrasive wear at high temperatures; furthermore, the adhered wear debris could form a secondary plateau under normal pressure, which could alleviate abrasion. Full article
Show Figures

Figure 1

22 pages, 8253 KB  
Article
Development of an Electroactive and Thermo-Reversible Diels–Alder Epoxy Nanocomposite Doped with Carbon Nanotubes
by Isaac Lorero, Álvaro Rodríguez, Mónica Campo and Silvia G. Prolongo
Polymers 2023, 15(24), 4715; https://doi.org/10.3390/polym15244715 - 15 Dec 2023
Cited by 5 | Viewed by 2047
Abstract
The manufacturing of Diels–Alder (D-A) crosslinked epoxy nanocomposites is an emerging field with several challenges to overcome: the synthesis is complex due to side reactions, the mechanical properties are hindered by the brittleness of these bonds, and the content of carbon nanotubes (CNT) [...] Read more.
The manufacturing of Diels–Alder (D-A) crosslinked epoxy nanocomposites is an emerging field with several challenges to overcome: the synthesis is complex due to side reactions, the mechanical properties are hindered by the brittleness of these bonds, and the content of carbon nanotubes (CNT) added to achieve electroactivity is much higher than the percolation thresholds of other conventional resins. In this work, we develop nanocomposites with different D-A crosslinking ratios (0, 0.6, and 1.0) and CNT contents (0.1, 0.3, 0.5, 0.7, and 0.9 wt.%), achieving a simplified route and avoiding the use of solvents and side reactions by selecting a two-step curing method (100 °C-6 h + 60 °C-12 h) that generates the thermo-reversible resins. These reversible nanocomposites show ohmic behavior and effective Joule heating, reaching the dissociation temperatures of the D-A bonds. The fully reversible nanocomposites (ratio 1.0) present more homogeneous CNT dispersion compared to the partially reversible nanocomposites (ratio 0.6), showing higher electrical conductivity, as well as higher brittleness. For this study, the nanocomposite with a partially reversible matrix (ratio 0.6) doped with 0.7 CNT wt.% was selected to allow us to study its new smart functionalities and performance due to its reversible network by analyzing self-healing and thermoforming. Full article
(This article belongs to the Special Issue Epoxy Thermoset Polymer Composites)
Show Figures

Figure 1

31 pages, 2191 KB  
Review
Metal and Metal Oxide Nanoparticle Incorporation in Polyurethane Foams: A Solution for Future Antimicrobial Materials?
by Radu Claudiu Fierascu, Eduard-Marius Lungulescu, Irina Fierascu, Miruna S. Stan, Ionela C. Voinea and Silviu Ionel Dumitrescu
Polymers 2023, 15(23), 4570; https://doi.org/10.3390/polym15234570 - 29 Nov 2023
Cited by 9 | Viewed by 3042
Abstract
With the technological developments witnessed in recent decades, nanotechnology and nanomaterials have found uses in several common applications and products we encounter daily. On the other hand, polyurethane (PU) foams represent an extremely versatile material, being widely recognized for their extensive application possibilities [...] Read more.
With the technological developments witnessed in recent decades, nanotechnology and nanomaterials have found uses in several common applications and products we encounter daily. On the other hand, polyurethane (PU) foams represent an extremely versatile material, being widely recognized for their extensive application possibilities and possessing a multitude of fundamental attributes that enhance their broad usability across various application fields. By combining the versatility of PU with the antimicrobial properties of nanoparticles, this emerging field holds promise for addressing the urgent need for effective antimicrobial materials in various applications. In this comprehensive review, we explore the synthesis methods, properties and applications of these nanocomposite materials, shedding light on their potential role in safeguarding public health and environmental sustainability. The main focus is on PU foams containing metal and metal oxide nanoparticles, but a brief presentation of the progress documented in the last few years regarding other antimicrobial nanomaterials incorporated into such foams is also given within this review in order to obtain a larger image of the possibilities to develop improved PU foams. Full article
(This article belongs to the Special Issue Advances in Functional Polyurethane and Composites)
Show Figures

Graphical abstract

15 pages, 3395 KB  
Article
Simultaneous Enhancement of the Mechanical Properties, Performance and Insensitivity of an Energetic Elastomeric Polyurethane Binder by Kinetically Grafting Reactive Spiranes
by Mingyang Ma and Younghwan Kwon
Polymers 2023, 15(23), 4564; https://doi.org/10.3390/polym15234564 - 28 Nov 2023
Viewed by 1485
Abstract
A series of robust energetic polyurethane binders was developed by in situ grafting reactive spiranes to achieve the migration-resistant processing aid and compensate for the energy output. The reactive grafting spiranes (RGSs), bearing two highly ring-strained spiranes, were synthesized sequentially to provide a [...] Read more.
A series of robust energetic polyurethane binders was developed by in situ grafting reactive spiranes to achieve the migration-resistant processing aid and compensate for the energy output. The reactive grafting spiranes (RGSs), bearing two highly ring-strained spiranes, were synthesized sequentially to provide a promising ring strain energy up to a maximum value of 290 kJ mol−1. The thermodynamic compatibility of the RGS with uncured glycidyl azido polymer (GAP) was studied quantitatively by analyzing the glass transition temperature of their blendings. The reactivity study of the catalyst-free click reaction with respect to spacer-dependent species was amplified by tracing the extent of the reaction and measuring the activation energy. The faster reactivity of propargyl species was evident from two experimental approaches, which were verified further by theoretical predictions. Interestingly, the energy gap difference in the frontier molecular orbitals agreed well with the difference in activation energy between the two types of spacer-dependent species. The mechanical and thermochemical enhancements of GAP-based polyurethane with RGS were basically gained from those highly ring-strained moieties. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

19 pages, 16138 KB  
Article
Self-Assembly of Symmetric Copolymers in Slits with Inert and Attractive Walls
by Tomáš Blovský, Karel Šindelka, Zuzana Limpouchová and Karel Procházka
Polymers 2023, 15(22), 4458; https://doi.org/10.3390/polym15224458 - 18 Nov 2023
Viewed by 1370
Abstract
Although the behavior of the confined semi-dilute solutions of self-assembling copolymers represents an important topic of basic and applied research, it has eluded the interest of scientists. Extensive series of dissipative particle dynamics simulations have been performed on semi-dilute solutions of A5 [...] Read more.
Although the behavior of the confined semi-dilute solutions of self-assembling copolymers represents an important topic of basic and applied research, it has eluded the interest of scientists. Extensive series of dissipative particle dynamics simulations have been performed on semi-dilute solutions of A5B5 chains in a selective solvent for A in slits using a DL-MESO simulation package. Simulations of corresponding bulk systems were performed for comparison. This study shows that the associates in the semi-dilute bulk solutions are partly structurally organized. Mild steric constraints in slits with non-attractive walls hardly affect the size of the associates, but they promote their structural arrangement in layers parallel to the slit walls. Attractive walls noticeably affect the association process. In slits with mildly attractive walls, the adsorption competes with the association process. At elevated concentrations, the associates start to form in wide slits when the walls are sparsely covered by separated associates, and the association process prevents the full coverage of the surface. In slits with strongly attractive walls, adsorption is the dominant behavior. The associates form in wide slits at elevated concentrations only after the walls are completely and continuously covered by the adsorbed chains. Full article
Show Figures

Graphical abstract

19 pages, 10734 KB  
Article
Novel Polyurethane-Based Systems Modified with Starch and Phase Change Materials for Bone Tissue Regeneration
by Klaudia Ordon, Piotr Szatkowski, Wojciech Piekarczyk, Elżbieta Pamuła and Kinga Pielichowska
Polymers 2023, 15(22), 4414; https://doi.org/10.3390/polym15224414 - 15 Nov 2023
Cited by 4 | Viewed by 1915
Abstract
Novel polyurethane-based materials have been synthesized by a two-step process using poly(ε–caprolactone) diol (PCL) and 1,3–propanediol/starch (PDO/ST) systems as chain extenders/cross-linkers and 1,6–hexamethylane diisocyante (HDI) as a potential material for bone tissue replacement or bone cements. A poly(ethylene glycol)/starch (PEG/ST) system has been [...] Read more.
Novel polyurethane-based materials have been synthesized by a two-step process using poly(ε–caprolactone) diol (PCL) and 1,3–propanediol/starch (PDO/ST) systems as chain extenders/cross-linkers and 1,6–hexamethylane diisocyante (HDI) as a potential material for bone tissue replacement or bone cements. A poly(ethylene glycol)/starch (PEG/ST) system has been applied as a form-stable phase change material (PCM) to decrease the maximum setting temperature, while hydroxyapatite (HAp) has been used as a bioactive nanofiller. FTIR and SEM-EDX analyses were performed to investigate the structure, surface morphology, and thermal properties of the obtained polyurethanes. FTIR spectroscopy confirmed the chemical structure of the synthesized polyurethanes. SEM-EDX analysis confirmed the incorporation of starch/hydroxyapatite into the polyurethane matrix. Modification with PCMs based on PEG or PEG/starch systems allowed for a decrease in the maximum setting temperature of PUs from 6 to 7.6 °C, depending on the type of PCM used. Thus, the obtained polyurethanes show a good energy storage effect and a good application potential for the synthesis of multifunctional bioactive materials for future use as bone cements. Full article
Show Figures

Figure 1

Back to TopTop