Molecular Mechanisms and Epigenetic Regulation of Abiotic Stress Tolerance in Plants

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 2824

Special Issue Editors


E-Mail Website
Guest Editor
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
Interests: abiotic stress; cucurbits; cucumber; pumpkin; salinity; drought; horticulture; plant biotechnology

E-Mail Website
Guest Editor
College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
Interests: horticulture research; plant physiology; plant protection

Special Issue Information

Dear Colleagues,

Abiotic stresses such as drought, salinity, extreme temperatures, heavy metal contamination, and nutrient deficiency/toxicity pose significant challenges to global agriculture, threatening crop productivity and food security. Understanding the molecular mechanisms and epigenetic regulations underlying plant tolerance to these environmental challenges is critical for developing resilient crop varieties and ensuring sustainable agriculture in the face of climate change.

This Special Issue aims to collate cutting-edge research and reviews on the molecular pathways and epigenetic modifications that govern abiotic stress tolerance in plants.

Topics of interest include, but are not limited to, the following:

1. Identification and functional characterization of genes and proteins involved in stress-responsive pathways.

2. Role of signaling molecules, transcription factors, and regulatory networks in abiotic stress tolerance and adaptation.

3. Advances in understanding epigenetic modifications, such as DNA methylation, histone modifications, and non-coding RNAs, in modulating stress tolerance.

4. Integrative omics approaches (genomics, transcriptomics, proteomics, and metabolomics) for dissecting stress tolerance mechanisms.

5. Application of genome editing tools, such as CRISPR-Cas9, to enhance abiotic stress resilience in crops.

6. Translational research for the development of stress-tolerant crops through molecular breeding or biotechnological interventions.

By highlighting the latest advances in this dynamic field, this Special Issue seeks to provide a platform for researchers to share their findings and foster collaborations aimed at addressing global agricultural challenges.

Dr. Hamza Sohail
Dr. Xiaodong Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • abiotic stress
  • molecular mechanisms
  • epigenetic regulation
  • stress signaling pathways
  • climate-resilient crops

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3823 KB  
Article
Genome-Wide Identification and Expression Profiling of the RNA-Directed DNA Methylation Pathway Genes in Cucumis sativus L.
by Li Ma, Ziyi Li, Lei Qiu, Jieni Gu, Piaopiao Shi, Xinyi Cao, Xinran Zhang, Xi Xu and Yinbo Ma
Plants 2025, 14(18), 2908; https://doi.org/10.3390/plants14182908 - 18 Sep 2025
Viewed by 294
Abstract
The RNA-directed DNA methylation (RdDM) pathway is a crucial epigenetic mechanism governing plant responses to environmental stress. While the RdDM pathway has been extensively studied in Arabidopsis thaliana, the comprehensive understanding of its components in cucumber (Cucumis sativus L.) remains lacking. [...] Read more.
The RNA-directed DNA methylation (RdDM) pathway is a crucial epigenetic mechanism governing plant responses to environmental stress. While the RdDM pathway has been extensively studied in Arabidopsis thaliana, the comprehensive understanding of its components in cucumber (Cucumis sativus L.) remains lacking. In this study, we performed a genome-wide identification and characterization of RdDM pathway genes in cucumber, followed by an analysis of their expression patterns across various tissues and under multiple abiotic stress conditions. A total of 67 putative CsRdDM genes were identified, which are unevenly distributed across the cucumber’s chromosomes. Phylogenetic and gene structure analyses revealed considerable evolutionary divergence, particularly within the key Argonaute gene family (CsAGO). Crucially, the promoter regions of CsRdDM genes were found to contain cis-regulatory elements associated with abiotic stress, light signaling, and development, suggesting their potential involvement in complex regulatory networks. RT-qPCR assays confirmed that CsRdDM genes exhibit distinct and stress-specific transcriptional patterns. Notably, several genes such as CsAGO4 and CsIDN2 showed antagonistic expression between roots and leaves under drought (PEG-6000) stress, implying a sophisticated, tissue-specific defense mechanism. Among them, CsAGO4 emerged as a candidate gene responsive to abiotic stress. Those findings provide new insights into the regulatory roles of CsRdDM genes under abiotic stress and highlight candidate genes for the genetic improvement of stress tolerance in cucumber. Full article
Show Figures

Figure 1

16 pages, 3930 KB  
Article
Integrated Transcriptome and Metabolome Analysis of Mature Stage Sand Pear Fruit Response to High-Temperature Stress
by Yu-Xuan Li, Jia-Bei Cai and Xiao Liu
Plants 2025, 14(17), 2776; https://doi.org/10.3390/plants14172776 - 4 Sep 2025
Viewed by 498
Abstract
Sand pear is a fruit tree crop with high economic value, widely cultivated in East Asia. However, ripening fruits often suffer from high-temperature stress, which has adverse effects on the quality and yield of the fruit. In this study, we perform high-temperature treatment [...] Read more.
Sand pear is a fruit tree crop with high economic value, widely cultivated in East Asia. However, ripening fruits often suffer from high-temperature stress, which has adverse effects on the quality and yield of the fruit. In this study, we perform high-temperature treatment on mature stage ‘Housui’ pear fruits. The results showed that heat stress decreased fruit firmness and mineral elements, as well as lead to the flesh appearance of watercore. High temperature induces H2O2, MDA, and the antioxidant enzyme activity including SOD, APX, POD, and CAT were significantly increased. Transcriptome and metabolomic analyses revealed that heat stress up-regulated genes related to sucrose synthesis (SPS) while down-regulating those involved in sucrose degradation (SS and NI), resulting in sucrose accumulation. Moreover, the expression of sorbitol dehydrogenase (SDH) and sorbitol transporter (SOT) genes was markedly suppressed, leading to sorbitol accumulation and impaired transport, which promoted watercore development. High temperature also stimulated the expression of ethylene synthesis genes, accelerating abnormal ripening of fruits. In addition, high temperature decreased the accumulation of organic acid and bioactive compounds. Additionally, several antioxidant enzymes genes, five heat shock transcription factors (HSFs) and 34 heat shock protein (HSP) genes were significantly up-regulated. Together, these findings provided new insights into the transcriptional response and metabolomic reprogramming of sand pear response to high-temperature stress. Full article
Show Figures

Figure 1

Back to TopTop