Regulation of Plant Responses to Heat and Drought Stress II

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 3311

Special Issue Editors

Agronomy College, Qingdao Agricultural University, Qingdao 266109, China
Interests: plant science; abiotic stress; heat stress; maize; RNA alternative splicing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. USDA-ARS Plant Science Research Unit, Raleigh, NC 27607, USA
2. Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
Interests: environmental stress; ozone; plant physiology and biochemistry; heat stress; soybeans; wheat
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

High temperatures and drought stresses disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress or drought stress, often in combination or with other stresses. Plants have evolved a variety of responses to heat and drought stress to minimize damage and to protect themselves from further stress. Plant scientists and breeders are challenged to understand how plants, especially crop plants, can better tolerate heat and drought stress. The responses of plants to heat and drought stress have been extensively studied, but the means and mechanisms to confer tolerance are less well understood. This Special Issue of Plants will highlight the regulatory mechanisms of plant response to heat and drought stress, including but not limited to transcriptional and post-transcriptional regulation, metabolism adjustment, and physiological processes that improve the heat and drought stress tolerance of plants.

Dr. Zhaoxia Li
Prof. Dr. Kent Burkey
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Abies pinsapo
  • drought
  • photosynthesis
  • stomatal conductance
  • resilience
  • water stress 

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 5423 KiB  
Article
Morphological, Physiological, and Photosynthetic Differences of Tartary Buckwheat Induced by Post-Anthesis Drought
by Hang Yuan, Qiang Wang, Anyin Qi, Shuang Li, Yan Hu, Zhiming Hu, Laichun Guo, Chenggang Liang, Wurijimusi Li, Changying Liu, Yanxia Sun, Liang Zou, Lianxin Peng, Dabing Xiang, Cheng Liu, Jingwei Huang and Yan Wan
Plants 2024, 13(15), 2161; https://doi.org/10.3390/plants13152161 - 5 Aug 2024
Cited by 4 | Viewed by 1399
Abstract
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is a crop of significant interest due to its nutritional value and resilience to drought conditions. However, drought, particularly following flowering, is a major factor contributing to yield reduction. This research employed two distinct Tartary buckwheat [...] Read more.
Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn) is a crop of significant interest due to its nutritional value and resilience to drought conditions. However, drought, particularly following flowering, is a major factor contributing to yield reduction. This research employed two distinct Tartary buckwheat genotypes to investigate the effects of post-anthesis drought on growth and physicochemical characteristics. The study aimed to elucidate the response of Tartary buckwheat to drought stress. The findings indicated that post-anthesis drought adversely impacted the growth, morphology, and biomass accumulation of Tartary buckwheat. Drought stress enhanced the maximum photosynthetic capacity (Fv/Fm) and light protection ability (NPQ) of the ‘Xiqiao-2’ genotype. In response to drought stress, ‘Dingku-1’ and ‘Xiqiao-2’ maintained osmotic balance by accumulating soluble sugars and proline, respectively. Notably, ‘Xiqiao-2’ exhibited elevated levels of flavonoids and polyphenols in its leaves, which helped mitigate oxidative damage caused by drought. Furthermore, rewatering after a brief drought period significantly improved plant height, stem diameter, and biomass accumulation in ‘Dingku-1’. Overall, ‘Xiqiao-2’ demonstrated greater long-term tolerance to post-anthesis drought, while ‘Dingku-1’ was less adversely affected by short-term post-anthesis drought. Full article
(This article belongs to the Special Issue Regulation of Plant Responses to Heat and Drought Stress II)
Show Figures

Figure 1

20 pages, 8399 KiB  
Article
Two Carya Species, Carya hunanensis and Carya illinoinensis, Used as Rootstocks Point to Improvements in the Heat Resistance of Carya cathayensis
by Shanxia Huang, Yanxia Xu, Xueqin Li, Boyu Ye and Songheng Jin
Plants 2024, 13(14), 1967; https://doi.org/10.3390/plants13141967 - 18 Jul 2024
Cited by 2 | Viewed by 1123
Abstract
Grafting as a crucial horticultural technique has been widely used in the cultivation of Carya cathayensis (Chinese hickory), which is a unique and important economic tree in the northeast of Zhejiang Province and the south of Anhui Province. However, the existing literature lacks [...] Read more.
Grafting as a crucial horticultural technique has been widely used in the cultivation of Carya cathayensis (Chinese hickory), which is a unique and important economic tree in the northeast of Zhejiang Province and the south of Anhui Province. However, the existing literature lacks research on the potential impact of various rootstocks on the thermal tolerance of Chinese hickory. The objectives of this study were to evaluate heat tolerance in four distinct groups of Chinese hickory, including C. cathayensis grafted onto Carya hunanensis and Carya illinoinensis, one self-grafted group (C. cathayensis grafted onto C. cathayensis), and one non-grafted group (C. cathayensis). We examined photosynthesis parameters, phytohormones, and differentially expressed genes in the four various hickory groups subjected to 25 °C, 35 °C, and 40 °C heat stress (HS). The results demonstrated that grafting onto C. hunanensis and C. illinoinensis exhibited a higher net photosynthetic rate and stomatal conductance, lower intercellular CO2 concentration, and smaller changes in plant hormone content compared to self-grafted and non-grafted group under HS. The transcriptome results revealed that the majority of differentially expressed genes (DEGs) associated with photosynthetic pathways exhibited downregulation under HS, while the degree of variation in grafted groups using C. hunanensis and C. illinoinensis as rootstocks was comparatively lower than that observed in self-grafted and non-grafted groups. The alteration in the expression patterns of DEGs involved in plant hormone synthesis and metabolism under HS corresponded to changes in plant hormone contents. Overall, Chinese hickory grafted onto C. hunanensis and C. illinoinensis exhibited enhanced resistance to high-temperature stress at the juvenile stage. Full article
(This article belongs to the Special Issue Regulation of Plant Responses to Heat and Drought Stress II)
Show Figures

Figure 1

Back to TopTop