Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2285 KB  
Article
An Efficient Silicon Grating Coupler for a 2 μm Waveband Based on a Polysilicon Overlay
by Yifan Wu, Yuzhou Wu, Jiefeng Xu, Xi Wang, You Wu, Yanglin Chen, Jiahang Li and Ke Xu
Photonics 2023, 10(8), 952; https://doi.org/10.3390/photonics10080952 - 20 Aug 2023
Cited by 3 | Viewed by 2957
Abstract
The short-wavelength mid-infrared spectral range of the 2 μm waveband has the advantages of low transmission loss and broad gain bandwidth, making it a promising candidate for the next optical fiber communication window. It is thus highly desired to develop high-performance silicon photonic [...] Read more.
The short-wavelength mid-infrared spectral range of the 2 μm waveband has the advantages of low transmission loss and broad gain bandwidth, making it a promising candidate for the next optical fiber communication window. It is thus highly desired to develop high-performance silicon photonic components in this waveband. Here, an efficient dual-layer grating coupler was designed on a 220 nm thick silicon-on-insulator based on raised polysilicon to address the low directionality issue. For the fiber tilted at an angle of 10°, the grating coupler’s simulated coupling efficiency reaches 80.3% (−0.95 dB) at a wavelength of 2002 nm. The 1 dB bandwidth is 66 nm. The structure is completely compatible with the standard silicon photonic fabrication process, making it suitable for large volume fabrication. Full article
Show Figures

Figure 1

18 pages, 8696 KB  
Article
Analysis and Prediction of Image Quality Degradation Caused by Diffraction of Infrared Optical System Turning Marks
by Haokun Ye, Jianping Zhang, Shangnan Zhao, Mingxin Liu and Xin Zhang
Photonics 2023, 10(8), 937; https://doi.org/10.3390/photonics10080937 - 17 Aug 2023
Viewed by 2040
Abstract
This paper addresses the issue of reduced image quality due to annular turning marks formed by single-point diamond turning (SPDT) during the processing of metal-based mirrors and infrared lenses. An ideal single-point diamond turning marks diffraction action model to quantitatively analyze the impact [...] Read more.
This paper addresses the issue of reduced image quality due to annular turning marks formed by single-point diamond turning (SPDT) during the processing of metal-based mirrors and infrared lenses. An ideal single-point diamond turning marks diffraction action model to quantitatively analyze the impact of turning marks diffraction on imaging quality degradation is proposed. Based on this model, a fast estimation algorithm for the optical modulation transfer function of the system under turning marks diffraction (TMTF) is proposed. The results show that the TMTF algorithm achieves high computational accuracy, with a relative error of only 3% in diffraction efficiency, while being hundreds of times faster than rigorous coupled wave analysis (RCWA). This method is significant for reducing manufacturing costs and improving production efficiency, as it avoids the problem of being unable to compute large-size optical systems due to computational resource and time constraints. Full article
Show Figures

Figure 1

13 pages, 3680 KB  
Communication
Vertical Multi-Junction Laser Power Converters with 61% Efficiency at 30 W Output Power and with Tolerance to Beam Non-Uniformity, Partial Illumination, and Beam Displacement
by Simon Fafard and Denis Masson
Photonics 2023, 10(8), 940; https://doi.org/10.3390/photonics10080940 - 17 Aug 2023
Cited by 23 | Viewed by 4873
Abstract
Stable and reliable optical power converting devices are obtained using vertical multi-junction laser power converters. They are based on the GaAs and the InP material systems and are used for power-over-fiber or power-beaming applications. This study demonstrates that, in addition to providing the [...] Read more.
Stable and reliable optical power converting devices are obtained using vertical multi-junction laser power converters. They are based on the GaAs and the InP material systems and are used for power-over-fiber or power-beaming applications. This study demonstrates that, in addition to providing the overall best conversion efficiencies with output voltages ideal for various applications, these semiconductor photovoltaic devices are very tolerant to beam non-uniformity, partial illumination, or beam displacement variations. Examples are given with two tight beams, each covering as little as ~7% of the cell area. An optical input power of 10 W was converted with still an efficiency of Eff ~59.4%. For an input power of 20 W, the illuminated area was set to ~22% without significantly affecting the conversion efficiency of Eff ~60%. Remarkably, for a beam diameter at ~65% of the chip length (i.e., covering ~35% of the chip area), a converted power of 29.5 W was obtained using a 12-junction GaAs device with a conversion efficiency of 61%. For a 10 junction InP-based device, an efficiency of Eff = 51.1% was obtained at an output voltage reaching as high as Voc = 5.954 V for an average optical intensity of 69 W/cm2 and an illumination area of ~57%. Full article
(This article belongs to the Topic Photovoltaic Materials and Devices)
Show Figures

Figure 1

14 pages, 5257 KB  
Article
Simple Method of Light Field Calculation for Shaping of 3D Light Curves
by Svetlana N. Khonina, Alexey P. Porfirev, Sergey G. Volotovskiy, Andrey V. Ustinov and Sergey V. Karpeev
Photonics 2023, 10(8), 941; https://doi.org/10.3390/photonics10080941 - 17 Aug 2023
Cited by 5 | Viewed by 1997
Abstract
We propose a method for generating three-dimensional light fields with given intensity and phase distributions using purely phase transmission functions. The method is based on a generalization of the well-known approach to the design of diffractive optical elements that focus an incident laser [...] Read more.
We propose a method for generating three-dimensional light fields with given intensity and phase distributions using purely phase transmission functions. The method is based on a generalization of the well-known approach to the design of diffractive optical elements that focus an incident laser beam into an array of light spots in space. To calculate purely phase transmission functions, we use amplitude encoding, which made it possible to implement the designed elements using a single spatial light modulator. The generation of light beams in the form of rings, spirals, Lissajous figures, and multi-petal “rose” distributions uniformly elongated along the optical axis in the required segment is demonstrated. It is also possible to control the three-dimensional structure of the intensity and phase of the shaped light fields along the propagation axis. The experimentally generated intensity distributions are in good agreement with the numerically obtained results and show high potential for the application of the proposed method in laser manipulation with nano- and microparticles, as well as in laser material processing. Full article
(This article belongs to the Special Issue Light Focusing and Optical Vortices)
Show Figures

Figure 1

14 pages, 4065 KB  
Article
A 1083 nm Narrow-Linewidth DFB Semiconductor Laser for Quantum Magnetometry
by Mengying Wu, Haiyang Yu, Wenyu Wang, Shaojie Li, Yulian Cao and Jianguo Liu
Photonics 2023, 10(8), 934; https://doi.org/10.3390/photonics10080934 - 15 Aug 2023
Cited by 1 | Viewed by 2295
Abstract
A 1083 nm laser, corresponding to a characteristic spectral line of 3He 23S1-23P, is the core light source for spin-exchange optical pumping-free technology, and thus has important developmental significance. In this paper, precise wavelength 1083.34 nm [...] Read more.
A 1083 nm laser, corresponding to a characteristic spectral line of 3He 23S1-23P, is the core light source for spin-exchange optical pumping-free technology, and thus has important developmental significance. In this paper, precise wavelength 1083.34 nm semiconductor lasers with 285 mW output power, −144.73 dBc/Hz RIN noise and 30.9952 kHz linewidth have been successfully achieved via reasonable chips design, high-quality epitaxial growth process and ultra-low reflectivity coating fabrication. All the results show the highest output power and ultra-narrow linewidth of the single-frequency 1083 nm DFB semiconductor laser achieved in this paper, which can fully satisfy the requirement of quantum magnetometers. Full article
Show Figures

Figure 1

11 pages, 4176 KB  
Article
Dual-Band Laser Stealth Based on Quasi Photonic Crystals
by Man Yuan, Jianjing Zhao, Xinye Liao and Xin He
Photonics 2023, 10(8), 931; https://doi.org/10.3390/photonics10080931 - 14 Aug 2023
Cited by 2 | Viewed by 1863
Abstract
A quasi photonic crystal (QPC) dual-band absorber for laser stealth is designed and numerically studied. It consists of a defective two-dimensional photonic crystal on a thick Ni film. The defective photonic crystal is a continuous Ge layer with air holes, but some of [...] Read more.
A quasi photonic crystal (QPC) dual-band absorber for laser stealth is designed and numerically studied. It consists of a defective two-dimensional photonic crystal on a thick Ni film. The defective photonic crystal is a continuous Ge layer with air holes, but some of the holes are periodically removed. Under a normal incidence that is perpendicular to the plane of the defects, the absorptivity can achieve 92.8% at the 1.064 μm wavelength and 93.2% at the 1.55 μm wavelength. Within large incident angles (<45 degrees), the dual-band absorptivity is still >80%. Additionally, the emissivity is as low as 5.8%~20.0% and 2.8%~5.8% in the 3–5 μm and 8–14 μm atmospheric windows. It is found that the introduced defects can couple the incidence into the structure and lead to spectral peaks (electromagnetic resonances) even without the bottom Ni film. With the help of the high-loss Ni film, the resonances are transformed into magnetic or/and electric modes of different orders. As a result, the QPC generates four absorption peaks. They are superimposed in pairs, resulting in enhanced absorption of the two laser wavelengths. Full article
(This article belongs to the Special Issue Advances in Photonic Materials and Technologies)
Show Figures

Figure 1

14 pages, 9207 KB  
Article
Experimental Comparison of Carrier Phase Recovery Algorithms for Uniform and Probabilistically Shaped QAM in a 324.1 Gb/S Fiber-mm-Wave Integration System at W-Band
by Junhao Zhang, Jiao Zhang, Qingsong Wang, Jian Chen, Wei Luo, Shitong Xiang, Yuancheng Cai, Bingchang Hua, Mingzheng Lei, Yucong Zou, Liang Tian, Xingyu Chen and Min Zhu
Photonics 2023, 10(8), 927; https://doi.org/10.3390/photonics10080927 - 12 Aug 2023
Cited by 2 | Viewed by 2232
Abstract
We have experimentally implemented a photonics-aided large-capacity fiber-mm-wave wireless communication system employing a simple dual-polarized single-input single-output (SISO) wireless based on polarization multiplexing at the W-band. To compare the performance of different algorithms, 18G-baud, and 35G-baud 16-level quadrature-amplitude-modulation (16QAM), probabilistically shaped 16QAM (PS-16QAM), [...] Read more.
We have experimentally implemented a photonics-aided large-capacity fiber-mm-wave wireless communication system employing a simple dual-polarized single-input single-output (SISO) wireless based on polarization multiplexing at the W-band. To compare the performance of different algorithms, 18G-baud, and 35G-baud 16-level quadrature-amplitude-modulation (16QAM), probabilistically shaped 16QAM (PS-16QAM), 64QAM and PS-64QAM signal using different carrier phase recovery (CPR) algorithms are transmitted in the system. Moreover, we compare the Viterbi–Viterbi (VV), improved new algorithm based on VV (NVV), blind phase search (BPS), and two-stage BPS algorithms’ computational complexity to better compare different algorithms. Using the experiment result, we can demonstrate that the BPS algorithm is about half a magnitude better than the NVV algorithm for PS-QAM signals, while the NVV algorithm has the lowest computational complexity. Additionally, we also achieve error-free wireless transmission at a net data rate of 324.1 Gb/s with the bit error ratio (BER) below the forward-error correction (FEC) threshold of 1 × 10−2 assuming soft-decision forward-error correction (SD-FEC) when using the BPS algorithm. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

9 pages, 2089 KB  
Communication
Inverse Design of Broadband Absorption in the Visible with Plasmonic Multilayered Planar Structures
by Davi F. Rêgo, Igor L. Gomes de Souza, Vitaly F. Rodriguez-Esquerre and Gilliard N. Malheiros-Silveira
Photonics 2023, 10(8), 922; https://doi.org/10.3390/photonics10080922 - 11 Aug 2023
Cited by 2 | Viewed by 1737
Abstract
Plasmonic structures based on stacked layers of metal and dielectric materials excel as broadband absorbers because of the nonlinear relationship between the compound materials’ dispersion characteristics and the multilayered structure’s actual performance. In this work, radiation absorption along the plasmonic absorber is studied. [...] Read more.
Plasmonic structures based on stacked layers of metal and dielectric materials excel as broadband absorbers because of the nonlinear relationship between the compound materials’ dispersion characteristics and the multilayered structure’s actual performance. In this work, radiation absorption along the plasmonic absorber is studied. Broadband absorptance spectra play an important role in applications such as photovoltaics, detectors, modulators, and emitters. We propose and analyze plasmonic stacked structures that exhibit high broadband absorption. For this purpose, an inverse design approach has been implemented using a conventional genetic algorithm as a global optimizer in conjunction with a pattern search as a local optimizer. The proposed strategy found structures with absorption covering the visible spectrum, maintaining its performance for high incident angles. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

13 pages, 4973 KB  
Article
LiNEV: Visible Light Networking for Connected Vehicles
by Osama Saied, Omprakash Kaiwartya, Mohammad Aljaidi, Sushil Kumar, Mufti Mahmud, Rupak Kharel, Farah Al-Sallami and Charalampos C. Tsimenidis
Photonics 2023, 10(8), 925; https://doi.org/10.3390/photonics10080925 - 11 Aug 2023
Cited by 10 | Viewed by 2431
Abstract
DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) has been introduced to visible light networking framework for connected vehicles (LiNEV) systems as a modulation and multiplexing scheme. This is to overcome the light-emitting diode (LED) bandwidth limitation, as well as to reduce the inter-symbol [...] Read more.
DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) has been introduced to visible light networking framework for connected vehicles (LiNEV) systems as a modulation and multiplexing scheme. This is to overcome the light-emitting diode (LED) bandwidth limitation, as well as to reduce the inter-symbol interference caused by the multipath road fading. Due to the implementation of the inverse fast Fourier transform, DC-OFDM suffers from its large peak-to-average power ratio (PAPR), which degrades the performance in LiNEV systems, as the LEDs used in the vehicles’ headlights have a limited optical power-current linear range. To tackle this issue, discrete Fourier transform spread-optical pulse amplitude modulation (DFTS-OPAM) has been proposed as an alternative modulation scheme for LiNEV systems instead of DCO-OFDM. In this paper, we investigate the system performance of both schemes considering the light-emitting diode linear dynamic range and LED 3 dB modulation bandwidth limitations. The simulation results indicate that DCO-OFDM has a 9 dB higher PAPR value compared with DFTS-OPAM. Additionally, it is demonstrated that DCO-OFDM requires an LED with a linear range that is twice the one required by DFTS-OPAM for the same high quadrature amplitude modulation (QAM) order. Furthermore, the findings illustrate that when the signal bandwidth of both schemes significantly exceeds the LED modulation bandwidth, DCO-OFDM outperforms DFTS-OPAM, as it requires a lower signal-to-noise ratio at a high QAM order. Full article
(This article belongs to the Special Issue Advances in Visible Light Communication)
Show Figures

Figure 1

23 pages, 16196 KB  
Article
Nonlocal Hydrodynamic Model with Viscosive Damping and Generalized Drude–Lorentz Term
by Milan Burda and Ivan Richter
Photonics 2023, 10(8), 913; https://doi.org/10.3390/photonics10080913 - 9 Aug 2023
Cited by 1 | Viewed by 1709
Abstract
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the [...] Read more.
The response of plasmonic metal particles to an electromagnetic wave produces significant features at the nanoscale level. Different properties of the internal composition of a metal, such as its ionic background and the free electron gas, begin to manifest more prominently. As the dimensions of the nanostructures decrease, the classical local theory gradually becomes inadequate. Therefore, Maxwell’s equations need to be supplemented with a relationship determining the dynamics of current density which is the essence of nonlocal plasmonic models. In this field of physics, the standard (linearized) hydrodynamic model (HDM) has been widely adopted with great success, serving as the basis for a variety of simulation methods. However, ongoing efforts are also being made to expand and refine it. Recently, the GNOR (general nonlocal optical response) modification of the HDM has been used, with the intention of incorporating the influence of electron gas diffusion. Clearly, from the classical description of fluid dynamics, a close relationship between viscosive damping and diffusion arises. This offers a relevant motivation for introducing the GNOR modification in an alternative manner. The standard HDM and its existing GNOR modification also do not include the influence of interband electron transitions in the conduction band and other phenomena that are part of many refining modifications of the Drude–Lorentz and other models of metal permittivity. In this article, we present a modified version of GNOR-HDM that incorporates the viscosive damping of the electron gas and a generalized Drude–Lorentz term. In the selected simulations, we also introduce Landau damping, which corrects the magnitude of the standard damping constant of the electron gas based on the size of the nanoparticle. We have chosen a spherical particle as a suitable object for testing and comparing HD models and their modifications because it allows the calculation of precise analytical solutions for the interactions and, simultaneously, it is a relatively easily fabricated nanostructure in practice. Our contribution also includes our own analytical method for solving the HDM interaction of a plane wave with a spherical particle. This method forms the core of calculations of the characteristic quantities, such as the extinction cross-sections and the corresponding components of electric fields and current densities. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

19 pages, 5900 KB  
Article
Optical Trapping of Chiral Particles by Dual Laser Beams
by Jing Bai, Cheng-Xian Ge and Zhen-Sen Wu
Photonics 2023, 10(8), 905; https://doi.org/10.3390/photonics10080905 - 4 Aug 2023
Cited by 5 | Viewed by 2312
Abstract
In this paper, an analytical method for studying the radiation force (RF) of chiral spheres generated by dual laser beams is presented under the framework of generalized Lorenz–Mie theory (GLMT). According to the coordinate transformation relations, the arbitrarily incident laser beam is represented [...] Read more.
In this paper, an analytical method for studying the radiation force (RF) of chiral spheres generated by dual laser beams is presented under the framework of generalized Lorenz–Mie theory (GLMT). According to the coordinate transformation relations, the arbitrarily incident laser beam is represented by vector spherical harmonic functions (VSHFs) in the sphere system. The entire induced field expression coefficients of dual laser beams can be obtained by superposition of each illuminated field. Based on the momentum conservation theory, the concrete expression of lateral and axial RF on chiral sphere is derived. The current theories are shown to be valid by comparison with the existing reference. To investigate the stable capture state of chiral sphere, the influences of the corresponding parameters of chiral particles and dual laser beams on the trapping and manipulation are investigated in detail. The analytical study on the RF of dual laser beams on chiral particles is an efficient method for improving optical tweezers technology and can become an encouraging approach to realize the high accuracy operation of chiral particles. Full article
Show Figures

Figure 1

10 pages, 6637 KB  
Communication
The Effect of Electron Escape Rate on the Nonlinear Dynamics of Quantum Dot Lasers under Optical Feedback
by Qingqing Wang, Zhengmao Wu, Yanfei Zheng and Guangqiong Xia
Photonics 2023, 10(8), 878; https://doi.org/10.3390/photonics10080878 - 28 Jul 2023
Cited by 1 | Viewed by 1518
Abstract
When theoretically investigating the nonlinear dynamics of quantum dot lasers (QDLs), the parameter value of the electron escape rate (Ce) is sometimes approximated to zero to simplify the calculation. However, the value of Ce is dependent on the energy [...] Read more.
When theoretically investigating the nonlinear dynamics of quantum dot lasers (QDLs), the parameter value of the electron escape rate (Ce) is sometimes approximated to zero to simplify the calculation. However, the value of Ce is dependent on the energy interval between the ground state (GS) and the excited state (ES) in the conduction band and is affected by the operation temperature. As a result, such simplified approximation treatments may lead to inaccurate results. In this study, after considering the effect of Ce, we investigate the nonlinear dynamics of QDLs with and without optical feedback based on the asymmetric electron-hole carrier rate equation model. The simulation results show that without optical feedback, the lasing conditions for ES and GS in free-running QDLs are dependent on the value of Ce. A larger Ce is more helpful for the ES emission, and the GS emission will stop lasing if Ce is large enough. Through analyzing the dynamical characteristics of GS and ES in QDLs with optical feedback under different Ce values, it can be found that the dynamical characteristics are strongly correlative with Ce. Full article
(This article belongs to the Special Issue Lasers and Dynamic of Systems)
Show Figures

Figure 1

15 pages, 2130 KB  
Article
High-Order Harmonics Generation in Selenium-Containing Plasmas
by Rashid A. Ganeev
Photonics 2023, 10(7), 854; https://doi.org/10.3390/photonics10070854 - 24 Jul 2023
Cited by 5 | Viewed by 1609
Abstract
The studies of the high-order harmonics generated in Se-containing plasmas are reported. The ablation of selenium in a vacuum allowed for the formation of a plasma demonstrating high-order harmonics generation and resonance enhancement of the harmonic at the shortest wavelength reported so far [...] Read more.
The studies of the high-order harmonics generated in Se-containing plasmas are reported. The ablation of selenium in a vacuum allowed for the formation of a plasma demonstrating high-order harmonics generation and resonance enhancement of the harmonic at the shortest wavelength reported so far (λ ≈ 22.9 nm, Eph ≈ 54.14 eV). This harmonic corresponds to the 35th order of the 800-nm-class lasers. The influence of the presence of selenium in the molecular state (ZnSe and HgSe) on the suppression of the resonance effect during harmonics generation in plasma is studied. The enhanced 35th harmonic was analyzed by different methods of plasma formation using nanosecond, picosecond, and femtosecond pulses. The enhancement factor of the resonance-enhanced harmonic was measured to be 32× compared with the neighboring lower-order harmonics in the case of the picosecond-pulses-induced Se plasma. The role of the strong ionic transition of Se in the region of 22.7 nm in the observation of the resonance-induced enhancement of a single harmonic is discussed. Full article
Show Figures

Figure 1

14 pages, 797 KB  
Review
Atmospheric Pre-Compensation of Ground-to-Space Communications with Adaptive Optics: Past, Present and Future—A Field Review
by Noelia Martinez
Photonics 2023, 10(7), 858; https://doi.org/10.3390/photonics10070858 - 24 Jul 2023
Cited by 6 | Viewed by 3723
Abstract
Conventionally used in astronomy, adaptive optics (AO) systems measure and correct for turbulence and, therefore, have the capability to mitigate the impact of the atmosphere on the ground-to-space communication links. Historically, there have been two main streams, respectively, advocating to use or not [...] Read more.
Conventionally used in astronomy, adaptive optics (AO) systems measure and correct for turbulence and, therefore, have the capability to mitigate the impact of the atmosphere on the ground-to-space communication links. Historically, there have been two main streams, respectively, advocating to use or not use adaptive optics on optical communications. This paper aims to present a comprehensive review of the field of AO-based uplink pre-compensation. It will cover the technical challenges associated with uplink correction, provide an overview of the state-of-the-art research and demonstrations from the early days to the present, and discuss the future prospects of AO-based uplink pre-compensation and potential trade-offs between performance, cost, and operational considerations. Full article
(This article belongs to the Special Issue New Perspectives in Free-Space Optical Communications and Networks)
Show Figures

Figure 1

15 pages, 6480 KB  
Article
Research on Indoor Visible Light Location Based on Fusion Clustering Algorithm
by Chenghu Ke, Yuting Shu and Xizheng Ke
Photonics 2023, 10(7), 853; https://doi.org/10.3390/photonics10070853 - 23 Jul 2023
Cited by 3 | Viewed by 1954
Abstract
Aiming at the problem of large positioning errors in the boundary area, a new location fingerprint location method based on a fusion clustering algorithm is proposed. This clustering-based method embodies the idea of rough location first and then fine location. Firstly, the edge [...] Read more.
Aiming at the problem of large positioning errors in the boundary area, a new location fingerprint location method based on a fusion clustering algorithm is proposed. This clustering-based method embodies the idea of rough location first and then fine location. Firstly, the edge regions of the received signal strength (RSS) samples which are greatly affected by reflection are divided using the k-medoids algorithm, and then the center part is clustered via density-based spatial clustering of applications with noise (DBSCAN). In the actual location estimation stage, the points to be measured can only be located in one of the classified areas, and combined with the optimal k-nearest neighbor algorithm (WOKNN) to match the location. The results show that the average positioning error of the algorithm is 13 cm in an indoor environment of 5 m × 5 m × 3 m. Compared with the traditional method without clustering, the positioning accuracy of the edge area is increased by 21%, and the overall improvement is 33.8%, which proves that the proposed algorithm effectively improves the efficiency of real-time positioning and indoor positioning accuracy. Full article
Show Figures

Figure 1

10 pages, 3291 KB  
Communication
Efficient 1054 nm Raman Random Fiber Laser
by Pan Wang, Shengtao Lin, Jiaojiao Zhang, Xingyu Bao, Longqun Ni, Yifei Qi and Zinan Wang
Photonics 2023, 10(7), 851; https://doi.org/10.3390/photonics10070851 - 22 Jul 2023
Cited by 4 | Viewed by 2367
Abstract
Low–coherence laser is regarded as the key to mitigating laser–plasma instability (LPI) in laser–driven inertial confinement fusion (ICF), where LPI can decrease the laser energy coupled to the target. With the merits of low coherence, high spectral stability, and flexible output characteristics, the [...] Read more.
Low–coherence laser is regarded as the key to mitigating laser–plasma instability (LPI) in laser–driven inertial confinement fusion (ICF), where LPI can decrease the laser energy coupled to the target. With the merits of low coherence, high spectral stability, and flexible output characteristics, the Raman random fiber laser (RRFL) is considered to be a candidate light source in ICF. In this paper, the 1054 nm RRFL with high slope efficiency is achieved for the first time. In the RRFL pump source design section, we have optimized the ytterbium–doped fiber (YDF) length by simulation and amplified the power by Master Oscillator Power Amplifier (MOPA) to realize a 1011 nm YDF laser with 47.3 dB optical signal–to–noise ratio (OSNR). In terms of RRFL cavity design, a fiber loop mirror and Rayleigh scattering in the HI 1060 Flex fiber provide wideband point feedback and random distributed feedback, respectively. Based on this system, we achieve an RRFL output with 0.4 nm half–maximum full width, 182% slope efficiency, and 41.3 dB OSNR. This work will provide guidance for the application of RRFL in high–energy–density physics research. Full article
(This article belongs to the Special Issue High Power Fiber Laser and Amplifiers)
Show Figures

Figure 1

10 pages, 1770 KB  
Article
All-Fiber Narrow-Bandwidth Mode-Locked Laser Based on Polarization-Dependent Helical Long-Period Grating
by Ying Wan, Chen Jiang, Zuxing Zhang, Yaya Mao, Jianxin Ren, Jianxiang Wen and Yunqi Liu
Photonics 2023, 10(7), 842; https://doi.org/10.3390/photonics10070842 - 21 Jul 2023
Cited by 5 | Viewed by 2972
Abstract
As a crucial component of nonlinear polarization rotation (NPR) mode locking, optical fiber gratings offer advantages such as polarization modulation capability, stability, fiber compatibility, and preparation maturity, making them a vital technological foundation for achieving NPR mode locking. Here, a polarization-maintaining fiber helical [...] Read more.
As a crucial component of nonlinear polarization rotation (NPR) mode locking, optical fiber gratings offer advantages such as polarization modulation capability, stability, fiber compatibility, and preparation maturity, making them a vital technological foundation for achieving NPR mode locking. Here, a polarization-maintaining fiber helical long-period grating (PMF-HLPG) was designed and fabricated as a polarizer using the CO2-laser direct-write technique to realize the NPR effect. A homemade fiber Bragg grating (FBG) was also introduced into the laser system to enable a narrow-bandwidth lasing output and wavelength tunability. Based on the PMF-HLPG and FBG mentioned above, an all-fiber mode-locked laser with a spectra bandwidth of 0.15 nm was constructed to generate stable short pulses with a fundamental repetition rate of 12.7122 MHz and a pulse duration of 30.08 ps. In particular, its signal-to-noise ratio is up to 84.5 dB, showing the high stability of the laser. Further, the operating wavelength of the laser can be tuned from 1559.65 nm to 1560.29 nm via heating the FBG while maintaining its mode-locked state with stability. The results indicate that the PMF-HLPG could be used as a polarizer to meet the NPR mechanism for ultrashort pulse laser applications in optical communication, optical sensing, and biomedical imaging. Full article
Show Figures

Figure 1

8 pages, 4421 KB  
Communication
Photonic-Assisted Microwave Frequency Measurement Using High Q-Factor Microdisk with High Accuracy
by Mengyao Zhao, Wenyu Wang, Lei Shi, Chicheng Che and Jianji Dong
Photonics 2023, 10(7), 847; https://doi.org/10.3390/photonics10070847 - 21 Jul 2023
Cited by 7 | Viewed by 2493
Abstract
Frequency measurement plays a crucial role in radar, communication, and various applications. The photonic-assisted frequency measurement method offers several advantages, including resistance to electromagnetic interference, broad bandwidth, and low power consumption. Notably, frequency-to-time mapping enables the measurement of various microwave signal types, such [...] Read more.
Frequency measurement plays a crucial role in radar, communication, and various applications. The photonic-assisted frequency measurement method offers several advantages, including resistance to electromagnetic interference, broad bandwidth, and low power consumption. Notably, frequency-to-time mapping enables the measurement of various microwave signal types, such as single-frequency, multiple-frequency, frequency hopping, and chirped signals. However, the accuracy of this method is currently limited due to the absence of resonant devices with high-quality factors, which are essential for achieving higher-precision measurements. In this work, a frequency measurement method based on an ultrahigh-quality-factor microdisk is proposed. By establishing a correlation between the time difference and the frequency to be measured, a reduction in measurement error to below 10 MHz within a frequency measurement range of 3 GHz is realized. Our work introduces a new approach to frequency measurement using optical devices, opening new possibilities in this field. Full article
(This article belongs to the Special Issue Microwave Photonic Techniques)
Show Figures

Figure 1

10 pages, 4213 KB  
Communication
Study on Cortisol Sensing Principle Based on Fluorophore and Aptamer Competitive Assay on Polymer Optical Fiber
by Vivek Semwal, Jonas Højgaard, Emil Møller, Ole Bang and Jakob Janting
Photonics 2023, 10(7), 840; https://doi.org/10.3390/photonics10070840 - 20 Jul 2023
Cited by 3 | Viewed by 3183
Abstract
In this study, we present a polymer optical fiber fluorophore/aptamer competitive assay-based cortisol sensing principle. We developed a low-cost, two-fiber perpendicular design for fluorophore-based sensing with less input light interference and high output signal intensity. The design is suitable for narrow stokes shift [...] Read more.
In this study, we present a polymer optical fiber fluorophore/aptamer competitive assay-based cortisol sensing principle. We developed a low-cost, two-fiber perpendicular design for fluorophore-based sensing with less input light interference and high output signal intensity. The design is suitable for narrow stokes shift fluorophores. We have demonstrated the cortisol sensing principle based on the competition between tagged and normal cortisol. To date, the sensing design has exhibited a slow response, and we identified possible modifications for improvement. Our estimation shows that with miniaturization and a modified sensor assay compartment design, a less than one-hour response time can be achieved. The reported sensing principle and low-cost new design will be helpful for the future development of fluorophore-based fiber optic aptasensors that can potentially be used in a wet environment for online sensing. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: Photonics Sensors)
Show Figures

Figure 1

9 pages, 2483 KB  
Communication
Non-Contact Real-Time Measurement of Refractive Index of Flowing Liquid Based on Optical Coherence Tomography
by Hongbo Fu, Weijian Gao, Zixin Lin, Zhemin Zeng, Wen Shi and Jian Zhang
Photonics 2023, 10(7), 841; https://doi.org/10.3390/photonics10070841 - 20 Jul 2023
Cited by 1 | Viewed by 2551
Abstract
The refractive index (RI) is one of the liquid’s most important physical parameters of liquid. The change of RI usually indicates the change of liquid properties, and this relation leads to broad application. This paper proposes a method based on optical coherence tomography [...] Read more.
The refractive index (RI) is one of the liquid’s most important physical parameters of liquid. The change of RI usually indicates the change of liquid properties, and this relation leads to broad application. This paper proposes a method based on optical coherence tomography (OCT) to measure the RI of liquid in real time. A series of targeted image-processing techniques play a vital role in this method. Benefiting from the advantages of OCT, this method does not require the operators to come into direct contact with liquids. Moreover, the principles and techniques adopted in this method imply that the measuring range of RI of unknown liquids is unlimited. The effectiveness of this method is validated by the experiment measuring the RI of sucrose liquids with gradient concentration. Another experiment thoroughly verifies this method’s feasibility in predicting sucrose concentration based on real-time measured RI. This simple and easy proposed method indicates an immense potential application prospect in the industry and scientific research. Full article
(This article belongs to the Special Issue Advanced Techniques in Biomedical Optical Imaging)
Show Figures

Figure 1

10 pages, 4068 KB  
Communication
Effect of Contact Angle on Friction Properties of Superhydrophobic Nickel Surface
by Junyuan Huang, Zhiwei Zhu, Ling Zhang, Dongdong Guo, Zhen Niu and Wei Zhang
Photonics 2023, 10(7), 829; https://doi.org/10.3390/photonics10070829 - 17 Jul 2023
Cited by 6 | Viewed by 2670
Abstract
Due to their excellent performance, superhydrophobic materials have received a lot of attention and research in friction reduction and wear resistance. However, the effect of different contact angles of superhydrophobicity on friction and wear properties has not been thoroughly studied. In this paper, [...] Read more.
Due to their excellent performance, superhydrophobic materials have received a lot of attention and research in friction reduction and wear resistance. However, the effect of different contact angles of superhydrophobicity on friction and wear properties has not been thoroughly studied. In this paper, a nanosecond pulsed laser was used to realize the preparation of a superhydrophobic nickel surface, which indeed reduced the coefficient of friction but also increased the wear volume when compared to the unprocessed surface. As the contact angle of the superhydrophobic nickel surface increased, the coefficient of friction gradually increased, and the wear volume decreased gradually in superhydrophobic nickel surfaces. When the laser energy density was 1 J/cm2, the contact angle was 150.3° and the minimum friction coefficient was 0.4. However, when the laser energy density was 50 J/cm2, the maximum contact angle was 156.4° and the minimum wear volume was 4.23 × 107 μm3. The friction direction also influenced the tribological properties of the superhydrophobic-textured surface. This method makes it possible to process superhydrophobic surfaces with more suitable friction and wear properties. Full article
(This article belongs to the Special Issue Fiber Laser and Their Applications)
Show Figures

Figure 1

9 pages, 1961 KB  
Article
A Large Area Wide Bandwidth THz Phase Shifter Plate for High Intensity Field Applications
by Can Koral, Zahra Mazaheri and Antonello Andreone
Photonics 2023, 10(7), 825; https://doi.org/10.3390/photonics10070825 - 15 Jul 2023
Cited by 3 | Viewed by 1840
Abstract
We present the design, fabrication, and experimental test of a THz all-dielectric phase shifter plate. The design consists of two wave plate zones coupled in a perpendicular orientation with respect to each other. A large surface area device is realized by an additive [...] Read more.
We present the design, fabrication, and experimental test of a THz all-dielectric phase shifter plate. The design consists of two wave plate zones coupled in a perpendicular orientation with respect to each other. A large surface area device is realized by an additive manufacturing technique using Acrylonitrile Butadiene Styrene (ABS). Its characteristics are analytically evaluated and experimentally measured in the THz band using time domain spectroscopy and imaging routines. The proposed design enables the creation of quasi-ideal phase retardation in between the two planes with good uniformity on a large surface area. We also achieve the flexibility to select the plane of symmetry around the chosen central axes of choice with a sensitive control over the electromagnetic field polarization direction without inducing any temporal shifts in between the wave front components of the traversed beam. Due to its inherent simplicity and robustness, the phase shifter can be easily scaled at higher frequencies and potentially used in several advanced applications, including free-electron laser (FEL) systems where an accurate polarization control of high intensity beams is required. Full article
(This article belongs to the Special Issue Terahertz Spectroscopy and Imaging)
Show Figures

Figure 1

10 pages, 5044 KB  
Communication
Engineering Substrate-Mediated Localized Surface Plasmons in Gold Nanodiscs
by Anisha Chirumamilla, Maria H. Salazar, Deyong Wang, Peter K. Kristensen, Duncan S. Sutherland, Manohar Chirumamilla, Vladimir N. Popok and Kjeld Pedersen
Photonics 2023, 10(7), 821; https://doi.org/10.3390/photonics10070821 - 14 Jul 2023
Cited by 1 | Viewed by 2131
Abstract
A variety of nanostructures capable of generating strong local electromagnetic fields (hot spots) in interaction with radiation have been under intensive investigation towards plasmonic applications in surface-enhanced Raman scattering (SERS), biosensing, broadband absorbers, thermophotovoltaics, photocatalysis, etc. In many cases, these nanostructures are formed [...] Read more.
A variety of nanostructures capable of generating strong local electromagnetic fields (hot spots) in interaction with radiation have been under intensive investigation towards plasmonic applications in surface-enhanced Raman scattering (SERS), biosensing, broadband absorbers, thermophotovoltaics, photocatalysis, etc. In many cases, these nanostructures are formed on a surface or embedded into a near-surface layer of the dielectric substrate, making some part of the field dissipate into the bulk and not contribute to the desired plasmonic functionality. To reduce such losses, the interface between the metallic nanostructures and the dielectric environment should be engineered. In the current work, Au nanodiscs are fabricated on Si posts of very small diameter (pin-shaped structures), enabling them to decouple the strong optical near fields localized at the nanodiscs from the bulk Si substrate. The Si post diameter is optimized by adjusting the gas flow rates in reactive-ion etching, resulting in a minimum post diameter of 20 nm at the nanodisc interface. The effect of this diameter on the localized surface plasmon resonance of the nanodisc is investigated with linear optical spectroscopic measurements, where a significant spectral blue shift of the resonance band is noticed compared to similar discs formed on bulk Si surface. The experimental results are compared with modelling where a 3-fold increase in the electric field enhancement is demonstrated. The fabricated pin-shaped nanostructures are tested in SERS measurements showing a significant increase in the enhancement factor in the order of 106. Thus, this work suggests a way of engineering 3D morphology to tune the substrate influence on the plasmonic properties of nanostructures and to develop efficient nanofabrication technologies. Full article
Show Figures

Figure 1

11 pages, 2282 KB  
Article
Two-Stage Link Loss Optimization of Divergent Gaussian Beams for Narrow Field-of-View Receivers in Line-of-Sight Indoor Downlink Optical Wireless Communication (Invited)
by Xinda Yan, Yuzhe Wang, Chao Li, Fan Li, Zizheng Cao and Eduward Tangdiongga
Photonics 2023, 10(7), 815; https://doi.org/10.3390/photonics10070815 - 13 Jul 2023
Cited by 5 | Viewed by 2282
Abstract
The predominant focus of research in high-speed optical wireless communication (OWC) lies in line-of-sight (LOS) links with narrow infrared beams. However, the implementation of precise tracking and steering necessitates delicate active devices, thereby presenting a formidable challenge in establishing a cost-effective wireless transmission. [...] Read more.
The predominant focus of research in high-speed optical wireless communication (OWC) lies in line-of-sight (LOS) links with narrow infrared beams. However, the implementation of precise tracking and steering necessitates delicate active devices, thereby presenting a formidable challenge in establishing a cost-effective wireless transmission. Other than using none-line-of-sight (NLOS) links with excessive link losses and multi-path distortions, the simplification of the tracking and steering process can be alternatively achieved through the utilization of divergent optical beams in LOS. This paper addresses the issue by relaxing the stringent link budget associated with divergent Gaussian-shaped optical beams and narrow field-of-view (FOV) receivers in LOS OWC through the independent optimization of geometrical path loss and fiber coupling loss. More importantly, the geometrical path loss is effectively mitigated by modifying the transverse intensity distribution of the optical beam using manipulations of multi-mode fibers (MMFs) in an all-fiber configuration. In addition, the sufficiently excited higher order modes (HOMs) of MMFs enable a homogenized distribution of received optical powers (ROPs) within the coverage area, which facilitates the mobility of end-users. Comparative analysis against back-to-back links without free-space transmission demonstrates the proposed scheme’s ability to achieve low power penalties. With the minimized link losses, experimental results demonstrate a 10 Gbps error-free (BER < 10−13) LOS OWC downlink transmission at 2.5 m over an angular range of 10° × 10° without using any optical pre-amplifications at a typical PIN receiver. The proposed scheme provides a simple and low-cost solution for high-speed and short-range indoor wireless applications. Full article
(This article belongs to the Special Issue Advances in Visible Light Communication)
Show Figures

Figure 1

19 pages, 5968 KB  
Review
Principle and Recent Development in Photonic Time-Stretch Imaging
by Guoqing Wang, Yuan Zhou, Rui Min, E Du and Chao Wang
Photonics 2023, 10(7), 817; https://doi.org/10.3390/photonics10070817 - 13 Jul 2023
Cited by 5 | Viewed by 3223
Abstract
Inspiring development in optical imaging enables great applications in the science and engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one mapping among space-wavelength-time [...] Read more.
Inspiring development in optical imaging enables great applications in the science and engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one mapping among space-wavelength-time using dispersive medium both in spatial and time domains. The ultrafast imaging speed of the photonics time-stretch imaging technique achieves an ultrahigh frame rate of tens of millions of frames per second, which exceeds the traditional imaging methods in several orders of magnitudes. Additionally, regarding ultrafast optical signal processing, it can combine several other optical technologies, such as compressive sensing, nonlinear processing, and deep learning. In this paper, we review the principle and recent development of photonic time-stretch imaging and discuss the future trends. Full article
Show Figures

Figure 1

17 pages, 45939 KB  
Article
Route to Chaos in a Unidirectional Ring of Three Diffusively Coupled Erbium-Doped Fiber Lasers
by José Octavio Esqueda de la Torre, Juan Hugo García-López, Rider Jaimes-Reátegui, Guillermo Huerta-Cuellar, Vicente Aboites and Alexander N. Pisarchik
Photonics 2023, 10(7), 813; https://doi.org/10.3390/photonics10070813 - 12 Jul 2023
Cited by 8 | Viewed by 1837
Abstract
We numerically investigate the dynamics of a ring consisting of three unidirectionally coupled Erbium-Doped Fiber Lasers (EDLFs) without external pump modulation. The study focuses on the system behavior as the coupling strength is varied, employing a six-dimensional mathematical model that includes three variables [...] Read more.
We numerically investigate the dynamics of a ring consisting of three unidirectionally coupled Erbium-Doped Fiber Lasers (EDLFs) without external pump modulation. The study focuses on the system behavior as the coupling strength is varied, employing a six-dimensional mathematical model that includes three variables for laser intensities and three variables for population inversions of all lasers. Our primary objective is to understand the system evolution towards chaos from a stable equilibrium in the ring, considering the impact of increasing coupling strength. To analyze the system’s behavior, we employ various techniques such as time series analysis, power spectra, Poincaré sections, bifurcation diagrams, and Lyapunov exponents. During the transition to chaos, the system undergoes a Hopf bifurcation and a series of torus bifurcations. An essential aspect of this study is the exploration of a rotating wave propagating along the ring, where the wave nature (periodic, quasiperiodic, or chaotic) depends on the coupling strength. Additionally, we observe the coexistence of periodic and chaotic orbits within a specific range of the coupling strength. However, for very strong coupling, this bistability disappears, resulting in a monostable system with a single limit cycle. This regime exhibits potential for applications that demand short laser pulses with a substantial increase in peak power, reaching nearly 20 times higher levels compared to the continuous mode when the lasers are uncoupled. This discovery holds particular importance for optical communication systems, especially considering the attenuation optical signals experience when transmitted over long distances. Full article
(This article belongs to the Special Issue Lasers and Dynamic of Systems)
Show Figures

Figure 1

20 pages, 4453 KB  
Article
Hierarchical Feature Enhancement Algorithm for Multispectral Infrared Images of Dark and Weak Targets
by Shuai Yang, Zhihui Zou, Yingchao Li, Haodong Shi and Qiang Fu
Photonics 2023, 10(7), 805; https://doi.org/10.3390/photonics10070805 - 11 Jul 2023
Cited by 3 | Viewed by 1457
Abstract
A multispectral infrared zoom optical system design and a single-frame hierarchical guided filtering image enhancement algorithm are proposed to address the technical problems of low contrast, blurred edges, and weak signal strength of single-spectrum infrared imaging of faint targets, which are easily drowned [...] Read more.
A multispectral infrared zoom optical system design and a single-frame hierarchical guided filtering image enhancement algorithm are proposed to address the technical problems of low contrast, blurred edges, and weak signal strength of single-spectrum infrared imaging of faint targets, which are easily drowned out by noise. The multispectral infrared zoom optical system, based on the theory of complex achromatic and mechanical positive group compensation, can simultaneously acquire multispectral image information for faint targets. The single-frame hierarchical guided filtering image enhancement algorithm, which extracts the background features and detailed features of faint targets in a hierarchical manner and then weights fusion, effectively enhances the target and suppresses the interference of complex background and noise. Solving multi-frame processing increases data storage and real-time challenges. The experimental verification of the optical system design and image enhancement algorithm proposed in this paper separately verified that the experimental enhancement was significant, with the combined use improving Mean Square Error (MSE) by 14.32, Signal-Noise Ratio (SNR) by 11.64, Peak Signal-to-Noise Ratio (PSNR) by 12.78, and Structural Similarity (SSIM) by 14.0% compared to guided filtering. This research lays the theoretical foundation for the research of infrared detection and tracking technology for clusters of faint targets. Full article
Show Figures

Figure 1

12 pages, 379 KB  
Article
Energy Efficiency Optimization for SLIPT-Enabled NOMA System
by Danyang Chen, Qingxuan Wang, Jianping Wang, Zhao Li, Shuai Wu, Rui Hao, Kai Fan, Huimin Lu and Jianli Jin
Photonics 2023, 10(7), 791; https://doi.org/10.3390/photonics10070791 - 9 Jul 2023
Cited by 4 | Viewed by 1747
Abstract
For the upcoming sixth generation (6G) networks, the application of simultaneous lightwave information and power transfer (SLIPT) in a non-orthogonal multiple access (NOMA) system is a potential solution to improve energy efficiency (EE). In this paper, we propose a novel SLIPT-enabled NOMA multi-user [...] Read more.
For the upcoming sixth generation (6G) networks, the application of simultaneous lightwave information and power transfer (SLIPT) in a non-orthogonal multiple access (NOMA) system is a potential solution to improve energy efficiency (EE). In this paper, we propose a novel SLIPT-enabled NOMA multi-user system with power splitting (PS) protocol and investigate the effect of system parameters on EE. In addition, to enhance the energy harvesting and information receiving performance of the proposed system, we build up an optimization framework that aims to maximize the EE of the system by jointly optimizing the power allocation of the users and the PS coefficient. We introduce a two-step particle swarm optimization (PSO) algorithm to solve this problem while satisfying the constraints of maximum transmit power, the minimum achievable data rate, and the minimum harvested energy. The numerical results demonstrate the SLIPT-enabled NOMA system using PSO algorithm has significantly improved up to 3.83 ×106 bit/s/J in terms of EE over the traditional orthogonal multiple access (OMA) systems. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Communication in China)
Show Figures

Figure 1

15 pages, 4542 KB  
Article
Angle-Dependent Transport Theory-Based Ray Transfer Function for Non-Contact Diffuse Optical Tomographic Imaging
by Stephen Hyunkeol Kim, Jingfei Jia and Andreas H. Hielscher
Photonics 2023, 10(7), 767; https://doi.org/10.3390/photonics10070767 - 3 Jul 2023
Viewed by 1630
Abstract
This work presents a generalized angle-dependent ray transfer function that can accurately map the angular and spatial distribution of light intensities on the tissue surface onto a camera image plane in a non-contact camera-based imaging system. The method developed here goes beyond existing [...] Read more.
This work presents a generalized angle-dependent ray transfer function that can accurately map the angular and spatial distribution of light intensities on the tissue surface onto a camera image plane in a non-contact camera-based imaging system. The method developed here goes beyond existing ray transfer models that apply to angle-averaged tomographic data alone. The angle-dependent ray transfer operator was constructed using backward ray tracing based on radiation surface theory. The proposed method was validated using numerical phantoms and experimental data from an actual non-contact imaging system. Full article
Show Figures

Figure 1

10 pages, 2940 KB  
Communication
Intrusion Monitoring Based on High Dimensional Random Matrix by Using Ultra-Weak Fiber Bragg Grating Array
by Hongcan Gu, Junbing Huang, Su Wu, Ciming Zhou, Zhiqiang Zhang, Cong Liu and Yandong Pang
Photonics 2023, 10(7), 733; https://doi.org/10.3390/photonics10070733 - 27 Jun 2023
Cited by 2 | Viewed by 1510
Abstract
In order to ensure that a perimeter security system can work effectively, a convenient and effective event detection algorithm has an important engineering significance. Given the above background, in this paper, we propose a high reliability intrusion event recognition method and vibration sensing [...] Read more.
In order to ensure that a perimeter security system can work effectively, a convenient and effective event detection algorithm has an important engineering significance. Given the above background, in this paper, we propose a high reliability intrusion event recognition method and vibration sensing system, based on ultra-weak fiber Bragg grating array, by using high dimensional random matrix. We obtain a high sensitivity optical interference signal by constructing a patch-matched optical interference system, then compose the demodulated interference signal into a high-dimensional random matrix. The statistical characteristics of the matrix for the Marcenko-Pastur (M-P) law and ring law are used to confirm the presence of intrusion events efficiently, which can reflect the limit spectrum distribution of the high-dimensional random matrix; meanwhile, the abnormal state quantity and moment are obtained. Further, the average spectral radius value is used to judge the fault cause. Field experimental results show that the proposed method can effectively obtain the correct monitoring data for the sensor array. By comparing the monitoring results of normal operation and crusher operation, we can detect the intrusion event in 4.5 s, and the accuracy rate can reach more than 90%, which verifies that the proposed high-dimensional random matrix analysis method can work properly, proving a practical engineering application prospect. Full article
(This article belongs to the Special Issue Optically Active Nanomaterials for Sensing Applications)
Show Figures

Figure 1

9 pages, 3127 KB  
Communication
Experimental Generation of Structured Light Beams through Highly Anisotropic Scattering Media with an Intensity Transmission Matrix Measurement
by Qiannan Lei, Haokai Gong, Shijie Tu, Yangjian Cai and Qian Zhao
Photonics 2023, 10(7), 737; https://doi.org/10.3390/photonics10070737 - 27 Jun 2023
Cited by 1 | Viewed by 2356
Abstract
Structured light beams have played important roles in the fields of optical imaging and optical manipulation. However, light fields scatter when they encounter highly anisotropic scattering media, such as biological tissue, which destroys their original structured fields and turns them into speckle fields. [...] Read more.
Structured light beams have played important roles in the fields of optical imaging and optical manipulation. However, light fields scatter when they encounter highly anisotropic scattering media, such as biological tissue, which destroys their original structured fields and turns them into speckle fields. To reconstruct structured light beams through highly anisotropic scattering media, we present a method based on intensity transmission matrix which only relates the input and output light intensity distributions. Compared with the conventional method which relies on the measurement of complex-valued transmission matrix, our scheme is easy to implement, fast and stable. With the assistance of spatial filters, three kinds of structured light beams, Bessel-like beams, vortex beams and cylindrical vector beams, were constructed experimentally through a ZnO scattering layer. The present method is expected to promote optical applications through highly anisotropic scattering media. Full article
(This article belongs to the Special Issue Technologies and Applications of Biophotonics)
Show Figures

Figure 1

13 pages, 7244 KB  
Article
First Experimental Demonstration of the Wide-Field Amplitude Surface Plasmon Resonance Microscopy in the Terahertz Range
by Vasiliy Valerievich Gerasimov, Oleg Eduardovich Kameshkov, Alexey Konstantinovich Nikitin, Ildus Shevketovich Khasanov, Alexey Georgievich Lemzyakov, Irina Veniaminovna Antonova, Artem Ilyich Ivanov, Nghiem Thi Ha Lien, Nguyen Trong Nghia, Le Tu Anh, Nguyen Quoc Hung and Ta Thu Trang
Photonics 2023, 10(7), 723; https://doi.org/10.3390/photonics10070723 - 24 Jun 2023
Cited by 2 | Viewed by 2134
Abstract
We have demonstrated the wide-field amplitude surface plasmon resonance (SPR) microscopy technique in the terahertz (THz) range. A Zeonex polymer prism was utilized to excite surface plasmon polaritons (SPPs) through attenuated total reflection (ATR) in an Otto configuration. Coherent quasimonochromatic radiation with a [...] Read more.
We have demonstrated the wide-field amplitude surface plasmon resonance (SPR) microscopy technique in the terahertz (THz) range. A Zeonex polymer prism was utilized to excite surface plasmon polaritons (SPPs) through attenuated total reflection (ATR) in an Otto configuration. Coherent quasimonochromatic radiation with a wavelength of approximately 197 μm, generated by the Novosibirsk free electron laser, was employed. Our results indicate that the SPR microscopy method is applicable for investigating the planar surfaces of semiconductors at THz frequencies, provided that the SPPs’ cutoff frequency is close to the probing radiation frequency. This condition ensures that the propagation length of the SPPs is comparable to the radiation wavelength. By varying the air gap between the prism and the surface under examination, we acquired images of a polypropylene coating 20 µm thick and a graphene coating 35 nm thick on a flat indium antimonide substrate. The boundary between the coated and uncoated regions can be precisely localized through determination of the kink in the reflection coefficient of the THz radiation beam that illuminates the boundary between the regions if the optimal conditions for the generation of the SPPs in the uncoated region are met. Full article
(This article belongs to the Special Issue Terahertz Spectroscopy and Imaging)
Show Figures

Figure 1

16 pages, 4443 KB  
Review
Sb-Based Low-Noise Avalanche Photodiodes
by Joe C. Campbell, John P. R. David and Seth R. Bank
Photonics 2023, 10(7), 715; https://doi.org/10.3390/photonics10070715 - 22 Jun 2023
Cited by 7 | Viewed by 4248
Abstract
Accurate detection of weak optical signals is a key function for a wide range of applications. A key performance parameter is the receiver signal-to-noise ratio, which depends on the noise of the photodetector and the following electrical circuitry. The circuit noise is typically [...] Read more.
Accurate detection of weak optical signals is a key function for a wide range of applications. A key performance parameter is the receiver signal-to-noise ratio, which depends on the noise of the photodetector and the following electrical circuitry. The circuit noise is typically larger than the noise of photodetectors that do not have internal gain. As a result, a detector that provides signal gain can achieve higher sensitivity. This is accomplished by increasing the photodetector gain until the noise associated with the gain mechanism is comparable to that of the output electrical circuit. For avalanche photodiodes (APDs), the noise that arises from the gain mechanism, impact ionization, increases with gain and depends on the material from which the APD is fabricated. Si APDs have established the state-of-the-art for low-noise gain for the past five decades. Recently, APDs fabricated from two Sb-based III-V compound quaternary materials, AlxIn1-xAsySb1-y and AlxGa1-xAsySb1-y, have achieved noise characteristics comparable to those of Si APDs with the added benefit that they can operate in the short-wave infrared (SWIR) and extended SWIR spectral regions. This paper describes the materials and device characteristics of these APDs and their performance in different spectral regions. Full article
(This article belongs to the Special Issue Advances in Avalanche Photodiodes)
Show Figures

Figure 1

9 pages, 3397 KB  
Communication
All-Polarization-Maintaining, Mode-Locking Fiber Front-End Laser Delivering Both the Picosecond Seed Laser and the Femtosecond Seed Laser
by Yinuo Zhang, Hao Zhang, Kong Gao, Wenchao Qiao, Tianli Feng, Xian Zhao and Yizhou Liu
Photonics 2023, 10(6), 665; https://doi.org/10.3390/photonics10060665 - 8 Jun 2023
Viewed by 2137
Abstract
An ytterbium-doped, mode-locking fiber front-end laser, delivering both a femtosecond seed laser and picosecond seed laser, was demonstrated. The fundamental repetition rate of the 1031 nm mode-locked laser was 32.77 MHz, realized with the all-polarization-maintaining (all-PM) nonlinear amplifying loop mirror (NALM). The femtosecond [...] Read more.
An ytterbium-doped, mode-locking fiber front-end laser, delivering both a femtosecond seed laser and picosecond seed laser, was demonstrated. The fundamental repetition rate of the 1031 nm mode-locked laser was 32.77 MHz, realized with the all-polarization-maintaining (all-PM) nonlinear amplifying loop mirror (NALM). The femtosecond seed laser and the picosecond seed laser were delivered after carefully optimizing the nonlinear amplification process. The corresponding pulse durations were 85 fs and 2.88 ps, with average power of 171 mW and 562.5 mW, respectively. Full article
(This article belongs to the Special Issue Ultrafast Laser Systems)
Show Figures

Figure 1

21 pages, 9221 KB  
Review
A Review of Advanced Transceiver Technologies in Visible Light Communications
by Cuiwei He and Chen Chen
Photonics 2023, 10(6), 648; https://doi.org/10.3390/photonics10060648 - 3 Jun 2023
Cited by 22 | Viewed by 5568
Abstract
Visible Light Communication (VLC) is an emerging technology that utilizes light-emitting diodes (LEDs) for both indoor illumination and wireless communications. It has the potential to enhance the existing WiFi network and connect a large number of high-speed internet users in future smart home [...] Read more.
Visible Light Communication (VLC) is an emerging technology that utilizes light-emitting diodes (LEDs) for both indoor illumination and wireless communications. It has the potential to enhance the existing WiFi network and connect a large number of high-speed internet users in future smart home environments. Over the past two decades, VLC techniques have made significant strides, resulting in transmission data rates increasing from just a few Mbps to several tens of Gbps. These achievements can be attributed to the development of various transceiver technologies. At the transmitter, LEDs should provide high-quality light for illumination and support wide modulation bandwidths. Meanwhile, at the receiver, optics systems should have functions such as optical filtering, light concentration, and, ideally, a wide field of view (FOV). The photodetector must efficiently convert the optical signal into an electrical signal. Different VLC systems typically consider various transceiver designs. In this paper, we provide a survey of some important emerging technologies used to create advanced optical transceivers in VLC. Full article
(This article belongs to the Special Issue Advances in Visible Light Communication)
Show Figures

Figure 1

25 pages, 7076 KB  
Review
A Review on Image Sensor Communication and Its Applications to Vehicles
by Ruiyi Huang and Takaya Yamazato
Photonics 2023, 10(6), 617; https://doi.org/10.3390/photonics10060617 - 26 May 2023
Cited by 13 | Viewed by 3983
Abstract
Image sensor communication (ISC), also known as optical camera communication, is a form of visible light communication that utilizes image sensors rather than a single photodiode, for data reception. ISC offers spatial separation properties and robustness to ambient noise, making it suitable for [...] Read more.
Image sensor communication (ISC), also known as optical camera communication, is a form of visible light communication that utilizes image sensors rather than a single photodiode, for data reception. ISC offers spatial separation properties and robustness to ambient noise, making it suitable for outdoor applications such as intelligent transportation systems (ITSs). This review analyzes the research trends in ISC, specifically concerning its application in ITSs. Our focus is on various ISC receivers, including rolling shutter cameras, global shutter high-speed cameras, optical communication image sensors, and event cameras. We analyze how each of these receivers is being utilized in ISC vehicular applications. In addition, we highlight the use of ISC in range estimation techniques and the ability to achieve simultaneous communication and range estimation. By examining these topics, we aim to provide a comprehensive overview of the role of ISC technology in ITSs and its potential for future development. Full article
(This article belongs to the Special Issue Advances in Visible Light Communication)
Show Figures

Figure 1

10 pages, 1487 KB  
Communication
Optical Chaos in Saturated Nonlinear Media
by Fuqiang Li, Ziyang Chen, Jie Song, Meng Li and Cibo Lou
Photonics 2023, 10(5), 600; https://doi.org/10.3390/photonics10050600 - 22 May 2023
Cited by 2 | Viewed by 1698
Abstract
In the study of the evolution of Gaussian beam in saturated nonlinear media, it is found that the probability of optical rogue waves changes with the change of nonlinearity. The light intensity distribution on the exit surface of nonlinear medium can be characterized [...] Read more.
In the study of the evolution of Gaussian beam in saturated nonlinear media, it is found that the probability of optical rogue waves changes with the change of nonlinearity. The light intensity distribution on the exit surface of nonlinear medium can be characterized by scintillation index, and the change of rogue wave corresponds to the evolution of scintillation index. The rogue wave probability shows a complex trend with the evolution of nonlinearity. The Lyapunov exponent and power spectrum method are used to determine that the probability of rogue wave is chaotic with nonlinear evolution. Full article
Show Figures

Figure 1

11 pages, 16655 KB  
Article
Study on the Influence of Underwater LED Illumination on Bidirectional Underwater Wireless Optical Communication
by Kelin Sun, Biao Han, Jingchuan Yang, Bo Li, Bin Zhang, Kaibin Liu and Chen Li
Photonics 2023, 10(5), 596; https://doi.org/10.3390/photonics10050596 - 21 May 2023
Cited by 7 | Viewed by 1806
Abstract
Underwater wireless optical communication (UWOC) is acknowledged as a useful way to transmit data in the ocean for short-distance applications. Carrying a UWOC device on mobile platforms is quite practical in ocean engineering, which is helpful to exploit its advantages. In application, such [...] Read more.
Underwater wireless optical communication (UWOC) is acknowledged as a useful way to transmit data in the ocean for short-distance applications. Carrying a UWOC device on mobile platforms is quite practical in ocean engineering, which is helpful to exploit its advantages. In application, such a platform needs a camera to observe the surroundings and guide its action. Since the majority of ocean is always dark, active illumination is necessary to imaging. When UWOC works in such an environment, its performance is affected by the illumination light noise. In this paper, we study the influence of underwater LED illumination on bidirectional UWOC with the Monte Carlo method. We simulate forward noise from LED illumination to the opposite receiver in the cooperative terminal, and the backscattering noise on the adjacent receiver in the same terminal. The results show that the forward noise is reduced with the increase of theabsorption coefficient, scattering coefficient, transmitting distance, and separated distance between receiver and the optical axis of LED. However, it becomes greater with the field of view (FOV) of the receiver. The backscattering noise is reduced with the increase of the absorption coefficient and separated distance between receiver and LED. However, it becomes greater with the FOV and scattering coefficient, while it has little relation with transmitting distance. In order to reduce these two kinds of noises, besides inserting an optical filter in the receivers and narrowing their FOV, the optical axis of LED light should keep away from the receivers. The results in this paper are helpful for UWOC application. Full article
Show Figures

Figure 1

9 pages, 1501 KB  
Communication
Photoresponse of Graphene Channel in Graphene-Oxide–Silicon Photodetectors
by Kuo-Chih Lee, Yu-Hsien Chuang, Chen-Kai Huang, Hui Li, Guo-En Chang, Kuan-Ming Hung and Hung Hsiang Cheng
Photonics 2023, 10(5), 568; https://doi.org/10.3390/photonics10050568 - 12 May 2023
Cited by 1 | Viewed by 2781
Abstract
Graphene-on-silicon photodetectors exhibit broadband detection capabilities with high responsivities, surpassing those of their counterpart semiconductors fabricated purely using graphene or Si. In these studies, graphene channels were considered electrically neutral, and signal amplification was typically attributed to the photogating effect. By contrast, herein, [...] Read more.
Graphene-on-silicon photodetectors exhibit broadband detection capabilities with high responsivities, surpassing those of their counterpart semiconductors fabricated purely using graphene or Si. In these studies, graphene channels were considered electrically neutral, and signal amplification was typically attributed to the photogating effect. By contrast, herein, we show graphene channels to exhibit p-type characteristics using a structure wherein a thin oxide layer insulated the graphene from Si. The p-type carrier concentration is higher (six-times) than the photoaging-induced carrier concentration and dominates the photocurrent. Additionally, we demonstrate photocurrent tunability in the channel. By operating this device under a back-gated bias, photocurrent tuning is realized with not only amplification but also attenuation. Gate amplification produces a current equal to the photogating current at a low bias (0.2 V), and it is approximately two orders of magnitude larger at a bias of 2 V, indicating the operation effectiveness. Meanwhile, photocurrent attenuation enables adjustments in the detector output for compatibility with read-out circuits. A quantification model of gate-dependent currents is further established based on the simulation model used for metal–oxide–semiconductor devices. Thus, this study addresses fundamental issues concerning graphene channels and highlights the potential of such devices as gate-tunable photodetectors in high-performance optoelectronics. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

15 pages, 3379 KB  
Review
Review of 2 × 2 Silicon Photonic Switches
by Wencheng Yue, Yan Cai and Mingbin Yu
Photonics 2023, 10(5), 564; https://doi.org/10.3390/photonics10050564 - 11 May 2023
Cited by 16 | Viewed by 6721
Abstract
With the advent of 5G, artificial intelligence (AI), Internet of Things (IoT), cloud computing, Internet plus, and so on, data traffic is exploding and higher requirements are put forward for information transmission and switching. Traditional switching requires optical/electrical/optical conversions, which brings additional power [...] Read more.
With the advent of 5G, artificial intelligence (AI), Internet of Things (IoT), cloud computing, Internet plus, and so on, data traffic is exploding and higher requirements are put forward for information transmission and switching. Traditional switching requires optical/electrical/optical conversions, which brings additional power consumption and requires the deployment of large amounts of cooling equipment. This increases the cost and complexity of the system. Moreover, limited by the electronic bottleneck, electrical switching will suffer from many problems such as bandwidth, delay, crosstalk, and so on, with the continuous reduction in device footprint. Optical switching does not require optical/electrical/optical conversions and has lower power consumption, larger capacity, and lower cost. Silicon photonic switches received much attention because of their compatibility with the complementary metal-oxide-semiconductor (CMOS) process and are anticipated to be potential candidates to replace electrical switches in many applications such as data center and telecommunication networks. 2 × 2 silicon photonic switches are the basic components to build the large-scale optical switching matrices. Thus, this review article mainly focuses on the principle and state of the art of 2 × 2 silicon photonic switches, including electro-optic switches, thermo-optic switches, and nonvolatile silicon photonic switches assisted by phase-change materials. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

11 pages, 3700 KB  
Article
Quantum Dot Lasers Directly Grown on 300 mm Si Wafers: Planar and In-Pocket
by Kaiyin Feng, Chen Shang, Eamonn Hughes, Andrew Clark, Rosalyn Koscica, Peter Ludewig, David Harame and John Bowers
Photonics 2023, 10(5), 534; https://doi.org/10.3390/photonics10050534 - 6 May 2023
Cited by 18 | Viewed by 7123
Abstract
We report for the first time the direct growth of quantum dot (QD) lasers with electrical pumping on 300 mm Si wafers on both a planar template and in-pocket template for in-plane photonic integration. O-band lasers with five QD layers were grown with [...] Read more.
We report for the first time the direct growth of quantum dot (QD) lasers with electrical pumping on 300 mm Si wafers on both a planar template and in-pocket template for in-plane photonic integration. O-band lasers with five QD layers were grown with molecular beam epitaxy (MBE) in a 300 mm reactor and then fabricated into standard Fabry–Perot ridge waveguide cavities. Edge-emitting lasers are demonstrated with high yield and reliable results ready for commercialization and scaled production, and efforts to make monolithically integrated lasing cavities grown on silicon-on-insulator (SOI) wafers vertically aligned and coupled to SiN waveguides on the same chip show the potential for 300 mm-scale Si photonic integration with in-pocket direct MBE growth. Full article
Show Figures

Figure 1

15 pages, 6478 KB  
Article
Nonlinear Optical Response of Dispersed Medium Based on Conjugates Single-Walled Carbon Nanotubes with Phthalocyanines
by Pavel N. Vasilevsky, Mikhail S. Savelyev, Alexander Yu. Tolbin, Artem V. Kuksin, Yulia O. Vasilevskaya, Andrey P. Orlov, Yury P. Shaman, Alexander A. Dudin, Alexander A. Pavlov and Alexander Yu. Gerasimenko
Photonics 2023, 10(5), 537; https://doi.org/10.3390/photonics10050537 - 6 May 2023
Cited by 6 | Viewed by 2373
Abstract
Nanosecond lasers have recently been widely involved in human activity. However, high-intensity laser radiation can cause severe damage to organs of vision and expensive photonic devices. Radiation in the near UV range is especially dangerous for human eyes, since it is strongly absorbed [...] Read more.
Nanosecond lasers have recently been widely involved in human activity. However, high-intensity laser radiation can cause severe damage to organs of vision and expensive photonic devices. Radiation in the near UV range is especially dangerous for human eyes, since it is strongly absorbed by biological media and is also invisible, i.e., the reaction time of the eye to such radiation is much lower than that of visible light. Passive limiters have high transmission (>70%) at a low light intensity and begin to “darken” only when the threshold value of the laser radiation intensity is reached. In this work, we studied liquid nanodispersed nonlinear optical limiters based on hybrids of single-walled carbon nanotubes (SWCNTs) with metal-free tetra(hydroxy)phthalocyanine (OH)4PcHH). The value of the hydrodynamic radius of separate particles after (OH)4PcHH binding increased from 288 ± 55 nm to 350 ± 60 nm, which confirms the attachment of phthalocyanine complexes to nanotubes. The third harmonic of a Nd:YAG nanosecond laser (355 nm, 20 ns) was used to study the nonlinear optical response. Based on a Z-scan with open-aperture and input-output dependence curves, third-order nonlinear optical absorption coefficients of 149, 236, and 229 cm/GW were obtained for dispersions of composites of SWCNTs and (OH)4PcHH in water, dimethylformamide (DMF), and dimethylsulfoxide (DMSO), respectively. Threshold values did not exceed 100 mJ/cm2. The Z-scan showed a gradual decrease in the duration of the laser pulse by 53%; however, near the focus, there was a sharp increase in the duration of the transmitted pulse, reaching a value of 29 ns in z = 0. This phenomenon confirms the occurrence of reverse saturable absorption in the investigated media and can be used in photonic devices to control the temporal characteristics of the signal. Thus, the possibility of protection of sensitive photonic devices and human eyes from nanosecond laser pulses in the near UV range by nanodispersed liquid media based on composites of SWCNTs with (OH)4PcHH has been discussed in this paper. Full article
(This article belongs to the Special Issue Nonlinear and Ultrafast Optics: Fundamentals and Applications)
Show Figures

Graphical abstract

11 pages, 2874 KB  
Communication
Valley-Selective Polarization in Twisted Bilayer Graphene Controlled by a Counter-Rotating Bicircular Laser Field
by Jiayin Chen, Candong Liu and Ruxin Li
Photonics 2023, 10(5), 516; https://doi.org/10.3390/photonics10050516 - 1 May 2023
Cited by 8 | Viewed by 2911
Abstract
The electron valley pseudospin in two-dimensional hexagonal materials is a crucial degree of freedom for achieving their potential application in valleytronic devices. Here, bringing valleytronics to layered van der Waals materials, we theoretically investigate lightwave-controlled valley-selective excitation in twisted bilayer graphene (tBLG) with [...] Read more.
The electron valley pseudospin in two-dimensional hexagonal materials is a crucial degree of freedom for achieving their potential application in valleytronic devices. Here, bringing valleytronics to layered van der Waals materials, we theoretically investigate lightwave-controlled valley-selective excitation in twisted bilayer graphene (tBLG) with a large twist angle. It is demonstrated that the counter-rotating bicircular light field, consisting of a fundamental circularly-polarized pulse and its counter-rotating second harmonic, can manipulate the sub-cycle valley transport dynamics by controlling the relative phase between two colors. In comparison with monolayer graphene, the unique interlayer coupling of tBLG renders its valley selectivity highly sensitive to duration, leading to a noticeable valley asymmetry that is excited by single-cycle pulses. We also describe the distinct signatures of the valley pseudospin change in terms of observing the valley-selective circularly-polarized high-harmonic generation. The results show that the valley pseudospin dynamics can still leave visible fingerprints in the modulation of harmonic signals with a two-color relative phase. This work could assist experimental researchers in selecting the appropriate protocols and parameters to obtain ideal control and characterization of valley polarization in tBLG. Full article
(This article belongs to the Special Issue Light Control and Particle Manipulation)
Show Figures

Figure 1

12 pages, 1968 KB  
Review
Toward Practical Optical Phased Arrays through Grating Antenna Engineering
by Youqiang Shuai, Zhiping Zhou and Hui Su
Photonics 2023, 10(5), 520; https://doi.org/10.3390/photonics10050520 - 1 May 2023
Cited by 10 | Viewed by 4801
Abstract
In recent years, using silicon-based waveguide grating antennas in optical phased array has become a research focus. To date, this technique has not been widely implemented in practical applications. In this paper, the basic principle of a waveguide grating antenna is described, and [...] Read more.
In recent years, using silicon-based waveguide grating antennas in optical phased array has become a research focus. To date, this technique has not been widely implemented in practical applications. In this paper, the basic principle of a waveguide grating antenna is described, and the researches on effective length, uniform emission and the directionality of diffraction are summarized. Through analysis, it is found that there is a trend to prepare grating antennas by using a SiN/Si hybrid integrated platform. A novel design of grating antenna using the hybrid integration technique is proposed. It is convenient to match with the antenna front-end components on the structural level and is more practical. Full article
(This article belongs to the Special Issue Advances in Optical 3D Integration)
Show Figures

Figure 1

10 pages, 1031 KB  
Communication
Single Photon Approach for Chirality Sensing
by Fabrizio Sgobba, Arianna Elefante, Stefano Dello Russo, Mario Siciliani de Cumis and Luigi Santamaria Amato
Photonics 2023, 10(5), 512; https://doi.org/10.3390/photonics10050512 - 28 Apr 2023
Viewed by 2723
Abstract
We developed a high sensitivity optical sensor for circular birefringence using a heralded photon source. The sensor can be employed for chirality measurements and, being based on single photons, can be exploited for fragile biological sample or in metrological applications where the light [...] Read more.
We developed a high sensitivity optical sensor for circular birefringence using a heralded photon source. The sensor can be employed for chirality measurements and, being based on single photons, can be exploited for fragile biological sample or in metrological applications where the light intensity must be kept as low as possible. We found the best operational condition; then, we calibrated the sensor and tested its performance up to a very long acquisition time, obtaining excellent stability and a sub-ppm birefringence detection limit (for a 100 μm sample), thus paving the way for fundamental physics test as well. Full article
(This article belongs to the Topic Advances in Optical Sensors)
Show Figures

Figure 1

12 pages, 5623 KB  
Communication
Surface-Emitting Lasers with Surface Metastructures
by Anjin Liu, Jing Zhang, Chenxi Hao, Minglu Wang and Wanhua Zheng
Photonics 2023, 10(5), 509; https://doi.org/10.3390/photonics10050509 - 27 Apr 2023
Cited by 6 | Viewed by 2787
Abstract
Vertical-cavity surface-emitting lasers (VCSELs) have been widely used in consumer electronics, light detection and ranging, optical interconnects, atomic sensors, and so on. In this paper, a VCSEL with the surface metastructure like one-dimensional high-contrast grating (HCG), based on the HCG-DBR vertical cavity, was [...] Read more.
Vertical-cavity surface-emitting lasers (VCSELs) have been widely used in consumer electronics, light detection and ranging, optical interconnects, atomic sensors, and so on. In this paper, a VCSEL with the surface metastructure like one-dimensional high-contrast grating (HCG), based on the HCG-DBR vertical cavity, was first designed and fabricated. The polarization characteristic of the HCG-VCSEL were experimentally studied. The p-doped top 4-pair DBR for the current spreading and the direction shift between the HCG and the elliptical oxide aperture may result in a low orthogonal polarization suppression ratio in the HCG-VCSEL. Then, the Bloch surface wave surface-emitting laser (BSW-SEL), based on the HCG-DBR metastructure, is proposed for single-mode, high-efficiency, and high-power output with a low divergence angle. The mode field and the far field profile of the BSW-SEL are calculated for verification. The surface-emitting lasers with surface metastructures are useful for the sensing applications and optical interconnects. Full article
Show Figures

Figure 1

12 pages, 3731 KB  
Article
High-Efficiency and Compact Polarization-Insensitive Multi-Segment Linear Silicon Nitride Edge Coupler
by Yuhao Zhang, Yi Liu, Xuhua Cao, Li Wang, Chunyuan Mu, Ming Li, Ninghua Zhu and Wei Chen
Photonics 2023, 10(5), 510; https://doi.org/10.3390/photonics10050510 - 27 Apr 2023
Cited by 10 | Viewed by 4358
Abstract
Edge couplers are widely utilized in photonic integrated circuits and are vital for ensuring efficient chip-to-fiber coupling. In this paper, we present a high-efficiency and compact polarization-insensitive multi-segment linear silicon nitride edge coupler for coupling to high numerical aperture fibers. By optimizing the [...] Read more.
Edge couplers are widely utilized in photonic integrated circuits and are vital for ensuring efficient chip-to-fiber coupling. In this paper, we present a high-efficiency and compact polarization-insensitive multi-segment linear silicon nitride edge coupler for coupling to high numerical aperture fibers. By optimizing the thickness of the up cladding and introducing air slots in the transverse direction, we have further modified the limiting effect of the mode field. This innovative edge coupler scheme boasts a compact structure and is compatible with existing mature standard processes, with a total length of only 38 μm. We numerically demonstrate that the proposed edge coupler exhibits a low coupling loss of 0.22 dB/0.31 dB for TE/TM modes at λ = 1550 nm. Furthermore, the proposed coupler displays high wavelength insensitivity within the range of 1400–1850 nm and maintains a coupling loss of less than 0.2 dB with a manufacturing deviation of ±20 nm. Full article
(This article belongs to the Topic Optical and Optoelectronic Materials and Applications)
Show Figures

Figure 1

10 pages, 3695 KB  
Communication
Theoretical Study on Dual-Function Optical Phased Array of LiDAR and Optical Wireless Communication Based on Optically Injection-Locked Semiconductor Lasers
by Anh-Hang Nguyen, Hyo-Sang Jeong, Hyungsik Shin and Hyuk-Kee Sung
Photonics 2023, 10(5), 498; https://doi.org/10.3390/photonics10050498 - 26 Apr 2023
Viewed by 2358
Abstract
Light detection and ranging (LiDAR) and optical wireless communication (OWC) are in high demand and rapidly developing owing to the explosive growth of smart systems that require automotive and mobile devices. Optical phased arrays (OPA) have become a key technology in LiDAR and [...] Read more.
Light detection and ranging (LiDAR) and optical wireless communication (OWC) are in high demand and rapidly developing owing to the explosive growth of smart systems that require automotive and mobile devices. Optical phased arrays (OPA) have become a key technology in LiDAR and OWC owing to their nonmechanical beam steering capabilities. However, using separate LiDAR and OWC platforms in one system creates problems, such as spectrum congestion, resource consumption, and high complexity. We propose a dual-function OPA that enables LiDAR and OWC to function on a single platform based on the simultaneous amplitude and phase modulation of optically injection-locked semiconductor lasers. We numerically demonstrated that the primary LiDAR and secondary OWC function simultaneously by independent control of the main and side lobes in the OPA signal. The variation in side lobe levels is controlled at 20 or 25 dB to realize low- and high-level data for OWC function as well as maintaining the main beam LiDAR function. We successfully achieved wide-opening eye patterns of 10 Gbps data transmission of the OWC operation. Full article
Show Figures

Figure 1

24 pages, 2183 KB  
Review
The Optical Inverse Problem in Quantitative Photoacoustic Tomography: A Review
by Zeqi Wang, Wei Tao and Hui Zhao
Photonics 2023, 10(5), 487; https://doi.org/10.3390/photonics10050487 - 24 Apr 2023
Cited by 13 | Viewed by 3317
Abstract
Photoacoustic tomography is a fast-growing biomedical imaging modality that combines rich optical contrast with a high acoustic resolution, at depths in tissues. Building upon the foundation of this technique, novel quantitative photoacoustic tomography fully leverages its advantages while further delivering improved quantification capabilities [...] Read more.
Photoacoustic tomography is a fast-growing biomedical imaging modality that combines rich optical contrast with a high acoustic resolution, at depths in tissues. Building upon the foundation of this technique, novel quantitative photoacoustic tomography fully leverages its advantages while further delivering improved quantification capabilities to produce high-accuracy concentration estimates, which has attracted substantial research interest in recent years. The kernel challenge associated with quantitative photoacoustic tomography is an optical inverse problem aiming to recover the absorption coefficient distribution from the conventional photoacoustic image. Although the crucial importance of the optical inversion has been widely acknowledged, achieving it has remained a persistent challenge due to the inherent non-linearity and non-uniqueness. In the past decade, numerous methods were proposed and have made noticeable progress in addressing this concern. Nevertheless, a review has been conspicuously absent for a long time. Aiming to bridge this gap, the present study comprehensively investigates the recent research in this field, and methods identified with significant value are introduced in this paper. Moreover, all included methods are systematically classified based on their underlying principles. Finally, we summarize each category and highlight its remaining challenges and potential future research directions. Full article
(This article belongs to the Special Issue Photoacoustic Imaging: Applications, Approaches, and Systems)
Show Figures

Figure 1

11 pages, 1987 KB  
Communication
All-Fiber Laser Feedback Interferometry for Sequential Sensing of In-Plane and Out-of-Plane Displacements
by Zhanwu Xie, Meng Zhang, Jie Li, Wei Xia and Dongmei Guo
Photonics 2023, 10(4), 480; https://doi.org/10.3390/photonics10040480 - 21 Apr 2023
Cited by 1 | Viewed by 1901
Abstract
In this paper, an all-fiber laser feedback interferometer (LFI) with a diffraction grating was developed for sequential measurement of in-plane and out-of-plane displacements without changing the optical arrangement. When the light emitted from an erbium-doped fiber ring laser is incident on a reflection [...] Read more.
In this paper, an all-fiber laser feedback interferometer (LFI) with a diffraction grating was developed for sequential measurement of in-plane and out-of-plane displacements without changing the optical arrangement. When the light emitted from an erbium-doped fiber ring laser is incident on a reflection grating at the Littrow angle, the diffracted light will return into the laser cavity along the original path, thus generating laser feedback interference. Experimental results reveal that the all-fiber system could achieve a precision of 40 nm in both in-plane and out-of-plane displacements sensing. Compared with the traditional all-fiber LFI, the proposed sensing system transfers the measuring scale from laser wavelength to grating period, and it has the advantages of good anti-interference performance and reliability. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

Back to TopTop