Solubilization and Controlled Release Strategy of Poorly Water-Soluble Drugs 2024

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 25 August 2024 | Viewed by 711

Special Issue Editor


E-Mail Website
Guest Editor
Departamento Ciencias Biomédicas, Facultad de Farmacia, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
Interests: drug formulation; pharmaceutical technology; formulation development and characterization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The processes of solubilization and controlled release of drugs that are not very soluble in water are of great relevance to the pre-formulation of drugs in pharmaceutical developments.

In recent years, a large number of drugs have been industrialized, but almost 70% of them have low solubility in water, which limits their dissolution rate and, consequently, their bioavailability. Undoubtedly, it is a problem with far-reaching repercussions for the pharmaceutical industry, so the discovery of new technological tools for the hydrosolubilization of drugs that do not affect their physical–chemical and therapeutic properties will constitute an extraordinary achievement.

On the other hand, from a pharmacological point of view, the search for knowledge about the interaction mechanism and the different properties of drug-controlled release systems is currently of great importance in drug formulation, especially in relation to their efficacy therapy, as well as achieving the correct amount of active ingredient, the right time and the precise place of action.

This Special Issue is dedicated to the latest advances in solubilization and controlled release processes for poorly soluble drugs. We invite authors to submit original research or review articles on these topics, including the development of novel solubilization strategies, as well as innovative alternative methods to obtain new controlled-release pharmaceutical forms, suitable for a specific patient and the pathology to be treated, without forgetting the best form of administration to obtain the optimal efficacy and safety of the drugs.

Prof. Dr. María Ángeles Peña Fernández
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug formulation
  • solubilization
  • controlled release systems
  • solubility
  • poor water-soluble drugs

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3024 KiB  
Article
Solid Self-Nanoemulsifying Drug Delivery Systems of Furosemide: In Vivo Proof of Concept for Enhanced Predictable Therapeutic Response
by Sania Gul, Sathvik Belagodu Sridhar, Aamir Jalil, Muhammad Akhlaq, Muhammad Sohail Arshad, Hafiz Shoaib Sarwar, Faisal Usman, Javedh Shareef and Sabin Thomas
Pharmaceuticals 2024, 17(4), 500; https://doi.org/10.3390/ph17040500 - 14 Apr 2024
Viewed by 506
Abstract
Liquid self-nano emulsifying drug delivery systems (SNEDDS) of furosemide (FSM) have been explored as a potential solution for enhancing solubility and permeability but are associated with rapid emulsification, spontaneous drug release, and poor in vivo correlation. To overcome the shortcoming, this study aimed [...] Read more.
Liquid self-nano emulsifying drug delivery systems (SNEDDS) of furosemide (FSM) have been explored as a potential solution for enhancing solubility and permeability but are associated with rapid emulsification, spontaneous drug release, and poor in vivo correlation. To overcome the shortcoming, this study aimed to develop liquid and solid self-emulsifying drug delivery systems for FSM, compare formulation dynamics, continue in vivo therapeutic efficacy, and investigate the advantages of solidification. For this purpose, liquid SNEDDS (L-SEDDS-FSM) were formed using oleic acid as an oil, chremophore EL, Tween 80, Tween 20 as a surfactant, and PEG 400 as a co-surfactant containing 53 mg/mL FSM. At the same time, solid SNEDDS (S-SEDDS-FSM) was developed by adsorbing liquid SNEDDS onto microcrystalline cellulose in a 1:1 ratio. Both formulations were evaluated for size, zeta potential, lipase degradation, and drug release. Moreover, in vivo diuretic studies regarding urine volume were carried out in mice to investigate the therapeutic responses of liquid and solid SNEDDS formulations. After dilution, L-SEDDS-FSM showed a mean droplet size of 115 ± 4.5 nm, while S-SEDDS-FSM depicted 116 ± 2.6 nm and zeta potentials of −5.4 ± 0.55 and −6.22 ± 1.2, respectively. S-SEDDS-FSM showed 1.8-fold reduced degradation by lipase enzymes in comparison to L-SEDDS-FSM. S-SEDDS-FSM demonstrated a sustained drug release pattern, releasing 63% of the drug over 180 min, in contrast to L-SEDDS-FSM, exhibiting 90% spontaneous drug release within 30 min. L-SEDDS-FSM exhibited a rapid upsurge in urine output (1550 ± 56 μL) compared to S-SEDDS-FSM, showing gradual urine output (969 ± 29 μL) till the 4th h of the study, providing sustained urine output yet a predictable therapeutic response. The solidification of SNEDDS effectively addresses challenges associated with spontaneous drug release and precipitation observed in liquid SNEDDS, highlighting the potential benefits of solid SNEDDS in improving the therapeutic response of furosemide. Full article
Show Figures

Graphical abstract

Back to TopTop