Use of Encapsulating Polymers of Active Compounds in the Pharmaceutical Industry

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmaceutical Technology".

Deadline for manuscript submissions: 24 October 2025 | Viewed by 1361

Special Issue Editors


E-Mail Website
Guest Editor
Medical and Pharmaceutical Biotechnology Unit, Center for Research and Assistance in Technology and Design of the State of Jalisco, Guadalajara 44270, Mexico
Interests: EVs; theragnostic; diagnostic; therapy; biosensors; omics

E-Mail Website
Guest Editor
Dirección de Investigación y Desarrollo, Universidad Anáhuac Mayab, Mérida 97310, Yucatán, Mexico
Interests: nutrition and bioactive substances and food science issues (new products); biotechnology entrepeneruship; food sustianability

E-Mail Website
Guest Editor
Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Calle Plan de Ayala, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, CDMX, Mexico
Interests: liposomes; encapsulation of drugs; treatment of cancer and tuberculosis

Special Issue Information

Dear Colleagues,

The advancement of the use of polymers for drug delivery is constantly growing; however, few reach the market. Currently, there are natural and synthetic polymers that are used to carry active molecules, although vesicles formed by proteins and lipids have also been considered polymeric carriers.

Therefore, recognizing viable trends for the industry offers a new perspective in designing innovative viable solutions for vehicles of active molecules.

Dr. Alba Adriana Vallejo-Cardona
Dr. Inocencio Higuera-Ciapara
Prof. Dr. Janna Douda
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer
  • drug delivery
  • active compounds
  • encapsulation
  • pharmaceutical industry
  • natural polymers
  • synthetic polymers

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6216 KiB  
Article
Efficient Delivery of SARS-CoV-2 Plasmid DNA in HEK-293T Cells Using Chitosan Nanoparticles
by Citlali Cecilia Mendoza-Guevara, Alejandro Martinez-Escobar, María del Pilar Ramos-Godínez, José Esteban Muñoz-Medina and Eva Ramon-Gallegos
Pharmaceuticals 2025, 18(5), 683; https://doi.org/10.3390/ph18050683 - 5 May 2025
Viewed by 717
Abstract
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a [...] Read more.
Background/Objectives: Gene therapy has emerged as a promising strategy for treating a wide range of diseases. However, a major challenge remains in developing efficient and safe delivery systems for genetic material. Nanoparticles, particularly chitosan nanoparticles (CNPs), have gained significant attention as a potential solution. This study focuses on designing a SARS-CoV-2 plasmid DNA (pDNA) conjugated with CNPs and evaluating its in vitro delivery efficiency. Methods: The Omicron Spike DNA sequence was inserted into the pIRES2-eGFP expression vector, and CNPs were synthesized with optimized physicochemical properties to enhance stability, cellular uptake, and transfection efficiency. The conjugate was characterized using UV-Vis, FT-IR, DLS, and TEM techniques. Transfection efficiency was assessed and compared to the commercially available TurboFect reagent as a control. Results: CNPs-pDNA polyplexes with an average size of 159.0 ± 33.1 nm (TEM), a zeta potential of +19.7 ± 0.3 mV, and 100% ± 0.0 encapsulation efficiency were developed as a non-viral delivery system. CNPs efficiently serve as a delivery vehicle for the constructed pDNA without altering cell morphology, achieving transfection efficiencies of 62–74%, compared to 55–70% for TurboFect. Furthermore, RT-qPCR confirmed the expression of Spike mRNA, and Western blot assays validated the expression of Spike protein. Notably, Spike protein expression from CNPs was found to be two-fold higher than the control at 96 h post-transfection. Conclusions: These findings suggest that CNPs are a promising and versatile platform for delivering genetic material. Importantly, this study highlights the intrinsic properties of chitosan, without the use of additional ligands, as a key factor in achieving efficient gene delivery. Full article
Show Figures

Figure 1

Back to TopTop