Natural Products for Anticancer, Anti-Inflammatory and Antimicrobial Therapies

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Natural Products".

Deadline for manuscript submissions: 31 May 2026 | Viewed by 5003

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Avenida K SN, Caborca 83600, Sonora, Mexico
Interests: natural products; active pharmaceutical ingredients; anticancer; anti-inflammatory; pharmaceutical formulations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Avenida K SN, Caborca 83600, Sonora, Mexico
Interests: medicinal plants; biological activities; antibiofilm; bioactive compounds
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Division of Clinical Pharmacology, Pediatrics Department, School of Medicine, University of Utah, 295 Chipeta Way, Salt Lake City, UT, USA
Interests: effectiveness and safety of natural products; herbal-drug interactions; pediatric clinical pharmacology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemistry, Biology and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
Interests: pharmacology; medical chemistry; cancer; folk medicine; phytopharmaceuticals; bioactive compounds

Special Issue Information

Dear Colleagues,

Cancer, chronic inflammation, and microbial resistance remain among the most pressing global health challenges. The limitations of conventional therapies have prompted research groups worldwide to explore novel therapeutic strategies to address these issues. In this context, natural products offer an attractive alternative due to their structural diversity, multi-targeted actions, and favorable safety profiles. Moreover, emerging trends in natural product research—artificial intelligence, virtual screening, and molecular docking—are revolutionizing the paradigm for discovering new active compounds. These tools, combined with omics approaches and the exploration of understudied ecosystems, are facilitating the development and design of more precise and sustainable drugs with greater potential to overcome current challenges.

This Special Issue welcomes original research articles focused on the analysis of the anticancer, anti-inflammatory, and antimicrobial properties of natural extracts, isolated compounds, or formulated products, and their mechanisms of action. Studies involving in vitro and in vivo evaluations, or clinical trials, are encouraged. By bringing together interdisciplinary perspectives, this collection seeks to drive innovation and deepen the understanding of natural products in the development of therapies for cancer, inflammation, and infectious diseases.

Prof. Dr. Heriberto Torres-Moreno
Prof. Dr. Julio César López-Romero
Dr. Elena Y. Enioutina
Dr. Max Vidal Gutiérrez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural products
  • anticancer
  • anti-inflammatory
  • antimicrobial
  • pharmacy
  • pharmacology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 7798 KB  
Article
The Effects of Frondanol, a Non-Polar Extract of the Atlantic Sea Cucumber, in Colon Cancer Cells
by Hardik Ghelani, Hala Altaher, Hadil Sarsour, Marah Tabbal, Sally Badawi, Thomas E. Adrian and Reem K. Jan
Pharmaceuticals 2025, 18(11), 1714; https://doi.org/10.3390/ph18111714 - 11 Nov 2025
Viewed by 513
Abstract
Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The search for effective, new antineoplastic drugs with fewer side effects for the treatment of CRC continues, with marine-derived compounds emerging as promising candidates. Objectives: This study investigates the anticancer [...] Read more.
Background: Colorectal cancer (CRC) is the second leading cause of cancer-related mortality worldwide. The search for effective, new antineoplastic drugs with fewer side effects for the treatment of CRC continues, with marine-derived compounds emerging as promising candidates. Objectives: This study investigates the anticancer potential of Frondanol, a nutraceutical derived from the Atlantic Sea cucumber Cucumaria frondosa, known for its potent anti-inflammatory properties. Methods: Two human CRC cell lines, Caco-2 and HT-29, were used to test the effects of Frondanol using various in vitro approaches. Results: Frondanol significantly inhibited cell viability in a dose- and time-dependent manner. At a 1:10,000 dilution, viability decreased to around 30% in Caco-2 and 20% in HT-29 after 24 h, dropping to nearly 5% at 48 h. Furthermore, a clonogenic assay showed around 50% reduction in colony formation in both cell lines. Flow cytometry-based Annexin V staining revealed that Frondanol increased early apoptosis to ~5.2% in Caco-2 and ~9.4% in HT-29 cells, while cell cycle analysis showed accumulation of the sub G0 (apoptotic) phase increasing from 1.5% to 14.7% (Caco-2) and from 1.9% to 23.8% (HT-29). At the molecular level, Frondanol treatment significantly decreased anti-apoptotic protein B-cell lymphoma (Bcl)-2 expression while increasing the expression of the proapoptotic protein Bcl-2-associated X-protein. Additionally, Frondanol markedly induced cytochrome c release from the mitochondria and activated caspase-9, caspase-7, and caspase-3 after treatment, alongside cleavage of the caspase-3 substrate poly (ADP-ribose) polymerase. Frondanol inhibited 5-lipoxygenase activity, further contributing to its anticancer effects. Conclusions: In conclusion, Frondanol inhibits CRC cell proliferation and induces apoptosis through the mitochondrial pathway in vitro, suggesting that it is a potential nutraceutical for the prevention of human colorectal cancer or a valuable source of anticancer compounds. Full article
Show Figures

Graphical abstract

19 pages, 1488 KB  
Article
In Vitro Evaluation of Annona muricata Leaf Infusion as a Modulator of Antineoplastic Drug-Induced Cytotoxicity in Cancer Cell Lines
by Ariana Cabrera-Licona, Gustavo A. Hernández-Fuentes, Kayim Pineda-Urbina, Alejandra E. Hernández-Rangel, Mario A. Alcalá-Pérez, Janet Diaz-Martinez, Uriel Díaz-Llerenas, José Guzmán-Esquivel, Osval A. Montesinos-López, Juan C. Casarez-Price, Mario Del-Toro-Equihua, Sergio A. Zaizar-Fregoso, Sergio Gamez-Bayardo, Oscar F. Beas-Guzmán and Iván Delgado-Enciso
Pharmaceuticals 2025, 18(8), 1177; https://doi.org/10.3390/ph18081177 - 9 Aug 2025
Viewed by 3771
Abstract
Background/Objectives: Annona muricata (AM), commonly known as soursop or guanabana, has long been used in traditional medicine for its purported anticancer properties. However, scientific studies evaluating its potential enhancing or additive effects with conventional antineoplastic drugs (ADs) remain limited. This study aimed [...] Read more.
Background/Objectives: Annona muricata (AM), commonly known as soursop or guanabana, has long been used in traditional medicine for its purported anticancer properties. However, scientific studies evaluating its potential enhancing or additive effects with conventional antineoplastic drugs (ADs) remain limited. This study aimed to assess the cytotoxic effects of an aqueous AM infusion alone and in combination with standard ADs in cancer cell lines, while also evaluating its safety in healthy cells. Additionally, we explored the potential molecular interactions of AM metabolites with therapeutic targets using silico modeling. Methods: An AM infusion (125 and 250 µg/mL) was tested on two cancer cell lines—MDA-MB-231 (human triple-negative breast cancer) and TC-1 (murine HPV16-positive cancer)—as well as healthy human leukocytes and a non-tumorigenic mouse lung cell line. Cell viability was assessed using the Alamar Blue™ assay. The combined effects of AM with multiple first-line ADs were evaluated. In silico molecular docking was performed with Molegro Virtual Docker to assess the interaction of AM metabolites (quercetin and hyperoside) with the A2B adenosine receptor. Additionally, the physicochemical properties of 13 AD were analyzed to explore correlations with cytotoxic outcomes. Results: AM infusion alone exhibited low cytotoxicity in both cancer and healthy cell types. However, when combined with ADs, it enhanced cytotoxic effects in cancer cells while sparing healthy cells at the evaluated concentrations. Docking studies revealed strong interactions between quercetin and hyperoside (major metabolites in the AM infusion) and the A2B receptor, supporting a possible mechanistic explanation for the observed effects. Conclusions: AM infusion may act as a chemical modulator, potentiating the effects of conventional ADs in cancer cells while preserving normal cell viability. These findings encourage further preclinical exploration of AM as a complementary agent in integrative oncology. Full article
Show Figures

Graphical abstract

Back to TopTop