Special Issue "Consumption of Sugar and Impact on Overweight"

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: closed (30 December 2017).

Special Issue Editor

Dr. Jaimie N Davis
E-Mail Website
Guest Editor
The University of Texas at Austin, Department of Nutritional Sciences, 103 West 24th Street, A2703, T.S. Painter Hall, Room 3.24, Austin, TX 78712, USA

Special Issue Information

Dear Colleagues,

The purpose of this Special Issue on “Consumption of Sugar and Impact on Overweight” is four-fold: 1) to evaluate the impact of longitudinal changes in sugar intake on adiposity and related metabolic risk factors in children and adults; 2) to assess how early life exposure to sugar intake impacts adiposity and growth in offspring; 3) to assess how increases in artificial sweetened products impact obesity and metabolic health; and 4) to examine and identify successful strategies leading to the decline in sugar intake. Sugar intake has consistently been linked to increases in obesity, type 2 diabetes and other cardiometabolic disease, in both child and adult populations. However, national data over the past decade suggests that sugar intake is slowly declining; thus, understanding how this decline in sugar intake impacts obesity and related metabolic risk factors is warranted. Coincidentally, artificial sweetened products and beverages have been on the rise, particularly in child populations, so there is a need to understand how the shift to artificial sweetened products impact obesity and related diseases. In addition, identifying factors and strategies that have been successful at decreasing sugar intake would be useful in informing future intervention and policy work.

Jaimie Davis, PhD, RD
Associate Professor
Department of Nutritional Sciences
The University of Texas at Austin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Sugar sweetened beverages
  • artificial sweetened products
  • added sugar
  • obesity
  • metabolic disease risk
  • longitudinal
  • intervention

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Diurnal Variation of Sweet Taste Recognition Thresholds Is Absent in Overweight and Obese Humans
Nutrients 2018, 10(3), 297; https://doi.org/10.3390/nu10030297 - 02 Mar 2018
Cited by 2
Abstract
Sweet taste thresholds are positively related to plasma leptin levels in normal weight humans: both show parallel diurnal variations and associations with postprandial glucose and insulin rises. Here, we tested whether this relationship also exists in overweight and obese (OW/Ob) individuals with hyperleptinemia. [...] Read more.
Sweet taste thresholds are positively related to plasma leptin levels in normal weight humans: both show parallel diurnal variations and associations with postprandial glucose and insulin rises. Here, we tested whether this relationship also exists in overweight and obese (OW/Ob) individuals with hyperleptinemia. We tested 36 Japanese OW/Ob subjects (body mass index (BMI) > 25 kg/m2) for recognition thresholds for various taste stimuli at seven different time points from 8:00 a.m. to 10:00 p.m. using the staircase methodology, and measured plasma leptin, insulin, and blood glucose levels before each taste threshold measurement. We also used the homeostatic model assessment of insulin resistance (HOMA-IR) to evaluate insulin resistance. The results demonstrated that, unlike normal weight subjects, OW/Ob subjects showed no significant diurnal variations in the recognition thresholds for sweet stimuli but exhibited negative associations between the diurnal variations of both leptin and sweet recognition thresholds and the HOMA-IR scores. These findings suggest that in OW/Ob subjects, the basal leptin levels (~20 ng/mL) may already exceed leptin’s effective concentration for the modulation of sweet sensitivity and that this leptin resistance-based attenuation of the diurnal variations of the sweet taste recognition thresholds may also be indirectly linked to insulin resistance in OW/Ob subjects. Full article
(This article belongs to the Special Issue Consumption of Sugar and Impact on Overweight)
Show Figures

Figure 1

Open AccessArticle
Effects of a Carob-Pod-Derived Sweetener on Glucose Metabolism
Nutrients 2018, 10(3), 271; https://doi.org/10.3390/nu10030271 - 27 Feb 2018
Cited by 3
Abstract
Background: Patients with type 2 diabetes mellitus (T2DM) have a higher incidence of cardiovascular (CV) events. The ingestion of high-glycemic index (GI) diets, specially sweetened beverage consumption, has been associated with the development of T2DM and CV disease. Objective: We investigated the effects [...] Read more.
Background: Patients with type 2 diabetes mellitus (T2DM) have a higher incidence of cardiovascular (CV) events. The ingestion of high-glycemic index (GI) diets, specially sweetened beverage consumption, has been associated with the development of T2DM and CV disease. Objective: We investigated the effects of the intake of a sweetened beverage, obtained from natural carbohydrates containing pinitol (PEB) compared to a sucrose-enriched beverage (SEB) in the context of impaired glucose tolerance (IGT) and diabetes. Methods: The study was divided in three different phases: (1) a discovery phase where the plasma proteomic profile was investigated by 2-DE (two-dimensional electrophoresis) followed by mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight—MALDI-TOF/TOF) in healthy and IGT volunteers; (2) a verification phase where the potential mechanisms behind the observed protein changes were investigated in the discovery cohort and in an additional group of T2DM volunteers; and (3) the results were validated in a proof-of-concept interventional study in an animal model of diabetic rats with complementary methodologies. Results: Six weeks of pinitol-enriched beverage (PEB) intake induced a significant increase in two proteins involved in the insulin secretion pathway, insulin-like growth factor acid labile subunit (IGF1BP-ALS; 1.3-fold increase; P = 0.200) and complement C4A (1.83-fold increase; P = 0.007) in IGT subjects but not in healthy volunteers. Changes in C4A were also found in the serum samples of Zucker diabetic fatty (ZDF) rats after four weeks of PEB intake compared to basal levels (P = 0.042). In addition, an increased expression of the glucose transporter-2 (GLUT2) gene was observed in the jejunum (P = 0.003) of inositol-supplemented rats when compared to sucrose supplementation. This change was correlated with the observed change in C4A (P = 0.002). Conclusions: Our results suggest that the substitution of a common sugar source, such as sucrose, by a naturally-based, pinitol-enriched beverage induces changes in the insulin secretion pathway that could help to reduce blood glucose levels by protecting β-cells and by stimulating the insulin secretion pathway. This mechanism of action could have a relevant role in the prevention of insulin resistance and diabetes progression. Full article
(This article belongs to the Special Issue Consumption of Sugar and Impact on Overweight)
Show Figures

Figure 1

Open AccessArticle
Incorporating Added Sugar Improves the Performance of the Health Star Rating Front-of-Pack Labelling System in Australia
Nutrients 2017, 9(7), 701; https://doi.org/10.3390/nu9070701 - 05 Jul 2017
Cited by 7
Abstract
Background: The Health Star Rating (HSR) is an interpretive front-of-pack labelling system that rates the overall nutritional profile of packaged foods. The algorithm underpinning the HSR includes total sugar content as one of the components. This has been criticised because intrinsic sugars naturally [...] Read more.
Background: The Health Star Rating (HSR) is an interpretive front-of-pack labelling system that rates the overall nutritional profile of packaged foods. The algorithm underpinning the HSR includes total sugar content as one of the components. This has been criticised because intrinsic sugars naturally present in dairy, fruits, and vegetables are treated the same as sugars added during food processing. We assessed whether the HSR could better discriminate between core and discretionary foods by including added sugar in the underlying algorithm. Methods: Nutrition information was extracted for 34,135 packaged foods available in The George Institute’s Australian FoodSwitch database. Added sugar levels were imputed from food composition databases. Products were classified as ‘core’ or ‘discretionary’ based on the Australian Dietary Guidelines. The ability of each of the nutrients included in the HSR algorithm, as well as added sugar, to discriminate between core and discretionary foods was estimated using the area under the curve (AUC). Results: 15,965 core and 18,350 discretionary foods were included. Of these, 8230 (52%) core foods and 15,947 (87%) discretionary foods contained added sugar. Median (Q1, Q3) HSRs were 4.0 (3.0, 4.5) for core foods and 2.0 (1.0, 3.0) for discretionary foods. Median added sugar contents (g/100 g) were 3.3 (1.5, 5.5) for core foods and 14.6 (1.8, 37.2) for discretionary foods. Of all the nutrients used in the current HSR algorithm, total sugar had the greatest individual capacity to discriminate between core and discretionary foods; AUC 0.692 (0.686; 0.697). Added sugar alone achieved an AUC of 0.777 (0.772; 0.782). A model with all nutrients in the current HSR algorithm had an AUC of 0.817 (0.812; 0.821), which increased to 0.871 (0.867; 0.874) with inclusion of added sugar. Conclusion: The HSR nutrients discriminate well between core and discretionary packaged foods. However, discrimination was improved when added sugar was also included. These data argue for inclusion of added sugar in an updated HSR algorithm and declaration of added sugar as part of mandatory nutrient declarations. Full article
(This article belongs to the Special Issue Consumption of Sugar and Impact on Overweight)
Show Figures

Figure 1

Back to TopTop