Special Issue "Growth, Characterization and Applications of Nanotubes"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Inorganic Materials and Metal-Organic Frameworks".

Deadline for manuscript submissions: 30 April 2022.

Special Issue Editor

Dr. Marius Dobromir
E-Mail Website
Guest Editor
Department of Research, Faculty of Physics, Alexandru Ioan Cuza University of Iaşi, 11, Carol I Blvd.,700506, Iaşi, România
Interests: nanotubes; electronic transport; photocatalysis; environment electronics; UV light sources

Special Issue Information

Dear Colleagues,

In the last few decades, the great demand for devices miniaturization has attracted the attention of researchers that focused on growth, modification, properties, and applications of one-dimensional nanostructures, such as nanotubes. Nanotubes are cylindrical structures with diameters of 1-100 nm. In recent years, nanotubes synthesized from different kind of materials (i.e., carbon-CNTs, titanium-NTAs, silicon carbide, boron nitride-BNNTs, etc.) have been selected as promising alternative materials for various applications, based on their characteristic properties, such as CNTs–  electrically insulating, semiconducting or of metallic conductance; NTAs–large area/volume ratio and faster electron transport, as well as low recombination rate of charge carriers, which enable increased photocatalytic efficiency, durability; SiC nanotubes–light weight filler in nanocomposite, catalyst support, environment electronics, hydrogen storage; BNNTs–the study of photoluminiscence, chatodluminiscence, absorption spectra, etc.

The Special Issue of Nanomaterials will attempt to cover the recent advancements in the nanotubes materials for electronic devices, photocatalytic devices, environment electronics devices, UV light source devices, etc.

Dr. Marius Dobromir
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanotubes
  • electronic transport
  • photocatalysis
  • environment electronics
  • UV light sources

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation
Nanomaterials 2021, 11(8), 1875; https://doi.org/10.3390/nano11081875 - 22 Jul 2021
Viewed by 395
Abstract
A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of [...] Read more.
A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs). Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes)
Show Figures

Graphical abstract

Article
A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins
Nanomaterials 2021, 11(5), 1346; https://doi.org/10.3390/nano11051346 - 20 May 2021
Cited by 1 | Viewed by 527
Abstract
Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, [...] Read more.
Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes)
Show Figures

Graphical abstract

Article
Complex Geometry Strain Sensors Based on 3D Printed Nanocomposites: Spring, Three-Column Device and Footstep-Sensing Platform
Nanomaterials 2021, 11(5), 1106; https://doi.org/10.3390/nano11051106 - 25 Apr 2021
Viewed by 574
Abstract
Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific [...] Read more.
Electromechanical sensing devices, based on resins doped with carbon nanotubes, were developed by digital light processing (DLP) 3D printing technology in order to increase design freedom and identify new future and innovative applications. The analysis of electromechanical properties was carried out on specific sensors manufactured by DLP 3D printing technology with complex geometries: a spring, a three-column device and a footstep-sensing platform based on the three-column device. All of them show a great sensitivity of the measured electrical resistance to the applied load and high cyclic reproducibility, demonstrating their versatility and applicability to be implemented in numerous items in our daily lives or in industrial devices. Different types of carbon nanotubes—single-walled, double-walled and multi-walled CNTs (SWCNTs, DWCNTs, MWCNTs)—were used to evaluate the effect of their morphology on electrical and electromechanical performance. SWCNT- and DWCNT-doped nanocomposites presented a higher Tg compared with MWCNT-doped nanocomposites due to a lower UV light shielding effect. This phenomenon also justifies the decrease of nanocomposite Tg with the increase of CNT content in every case. The electromechanical analysis reveals that SWCNT- and DWCNT-doped nanocomposites show a higher electromechanical performance than nanocomposites doped with MWCNTs, with a slight increment of strain sensitivity in tensile conditions, but also a significant strain sensitivity gain at bending conditions. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes)
Show Figures

Figure 1

Article
Carbon Nanotubes Decrease the Negative Impact of Alternaria solani in Tomato Crop
Nanomaterials 2021, 11(5), 1080; https://doi.org/10.3390/nano11051080 - 22 Apr 2021
Viewed by 546
Abstract
The diseases that attack the tomato crop are a limiting factor for its production and are difficult to control or eradicate. Stem and fruit rot and leaf blight caused by Alternaria solani causes severe damage and substantial yield losses. Carbon nanotubes (CNTs) could [...] Read more.
The diseases that attack the tomato crop are a limiting factor for its production and are difficult to control or eradicate. Stem and fruit rot and leaf blight caused by Alternaria solani causes severe damage and substantial yield losses. Carbon nanotubes (CNTs) could be an alternative for the control of pathogens since they have strong antimicrobial activity, in addition to inducing the activation of the antioxidant defense system in plants. In the present study, multi-walled carbon nanotubes were evaluated on the incidence and severity of A. solani. Moreover, to the impact they have on the antioxidant defense system and the photosynthetic capacity of the tomato crop. The results show that the application of CNTs had multiple positive effects on tomato crop. CNTs decreased the incidence and severity of A. solani. Furthermore, CNTs increased the fruit yield of tomato crop and dry shoot biomass. The antioxidant system was improved, since the content of ascorbic acid, flavonoids, and the activity of the glutathione peroxidase enzyme were increased. The net photosynthesis and water use efficiency were also increased by the application of CNTs. CNTs can be an option to control A. solani in tomato crop, and diminish the negative impact of this pathogen. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes)
Show Figures

Figure 1

Article
Effect of Co3O4 Nanoparticles on Improving Catalytic Behavior of Pd/Co3O4@MWCNT Composites for Cathodes in Direct Urea Fuel Cells
Nanomaterials 2021, 11(4), 1017; https://doi.org/10.3390/nano11041017 - 16 Apr 2021
Viewed by 450
Abstract
Direct urea fuel cells (DUFCs) have recently drawn increased attention as sustainable power generation devices because of their considerable advantages. Nonetheless, the kinetics of the oxidation-reduction reaction, particularly the electrochemical oxidation and oxygen reduction reaction (ORR), in direct urea fuel cells are slow [...] Read more.
Direct urea fuel cells (DUFCs) have recently drawn increased attention as sustainable power generation devices because of their considerable advantages. Nonetheless, the kinetics of the oxidation-reduction reaction, particularly the electrochemical oxidation and oxygen reduction reaction (ORR), in direct urea fuel cells are slow and hence considered to be inefficient. To overcome these disadvantages in DUFCs, Pd nanoparticles loaded onto Co3O4 supported by multi-walled carbon nanotubes (Pd/Co3O4@MWCNT) were employed as a promising cathode catalyst for enhancing the electrocatalytic activity and oxygen reduction reaction at the cathode in DUFCs. Co3O4@MWCNT and Pd/Co3O4@MWCNT were synthesized via a facile two-step hydrothermal process. A Pd/MWCNT catalyst was also prepared and evaluated to study the effect of Co3O4 on the performance of the Pd/Co3O4@MWCNT catalyst. A current density of 13.963 mA cm−2 and a maximum power density of 2.792 mW cm−2 at 20 °C were obtained. Pd/Co3O4@MWCNT is a prospectively effective cathode catalyst for DUFCs. The dilution of Pd with non-precious metal oxides in adequate amounts is economically conducive to highly practical catalysts with promising electrocatalytic activity in fuel cell applications. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes)
Show Figures

Figure 1

Back to TopTop