Next Article in Journal
Towards Drug Delivery Control Using Iron Oxide Nanoparticles in Three-Dimensional Magnetic Resonance Imaging
Previous Article in Journal
Conical Nanotubes Synthesized by Atomic Layer Deposition of Al2O3, TiO2, and SiO2 in Etched Ion-Track Nanochannels
Previous Article in Special Issue
A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins
Article

Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation

1
Institute of Biomedical Systems, National Research University of Electronic Technology MIET, Shokin Square 1, 124498 Moscow, Russia
2
Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, Bolshaya Pirogovskaya Street 2-4, 119991 Moscow, Russia
3
Scientific-Manufacturing Complex “Technological Centre”, Shokin Square 1, bld. 7 off. 7237, 124498 Moscow, Russia
4
Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Leninsky Prospekt 32A, 119991 Moscow, Russia
5
Department of Physics, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
*
Author to whom correspondence should be addressed.
Academic Editor: Marius Dobromir
Nanomaterials 2021, 11(8), 1875; https://doi.org/10.3390/nano11081875
Received: 29 June 2021 / Revised: 18 July 2021 / Accepted: 20 July 2021 / Published: 22 July 2021
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes)
A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs). View Full-Text
Keywords: carbon nanotubes; graphene sheets; hybrid nanostructures; networks; laser radiation; electrical conductivity; hardness; nanoelectronics; bioelectronics; intelligent wearable devices carbon nanotubes; graphene sheets; hybrid nanostructures; networks; laser radiation; electrical conductivity; hardness; nanoelectronics; bioelectronics; intelligent wearable devices
Show Figures

Graphical abstract

MDPI and ACS Style

Gerasimenko, A.Y.; Kuksin, A.V.; Shaman, Y.P.; Kitsyuk, E.P.; Fedorova, Y.O.; Sysa, A.V.; Pavlov, A.A.; Glukhova, O.E. Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation. Nanomaterials 2021, 11, 1875. https://doi.org/10.3390/nano11081875

AMA Style

Gerasimenko AY, Kuksin AV, Shaman YP, Kitsyuk EP, Fedorova YO, Sysa AV, Pavlov AA, Glukhova OE. Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation. Nanomaterials. 2021; 11(8):1875. https://doi.org/10.3390/nano11081875

Chicago/Turabian Style

Gerasimenko, Alexander Y., Artem V. Kuksin, Yury P. Shaman, Evgeny P. Kitsyuk, Yulia O. Fedorova, Artem V. Sysa, Alexander A. Pavlov, and Olga E. Glukhova 2021. "Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation" Nanomaterials 11, no. 8: 1875. https://doi.org/10.3390/nano11081875

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop