State-of-the-Art Carbon Related and Low-Dimensional Functional Nanomaterials

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "2D and Carbon Nanomaterials".

Deadline for manuscript submissions: 25 September 2024 | Viewed by 2076

Special Issue Editor


E-Mail Website
Guest Editor
School of Systems Engineering, Kochi University of Technology, Kochi, Japan
Interests: carbon nanotubes; graphene; low-dimensional materials; metamaterials; energy storage and conversion materials; neuromorphic materials; thin film technology; field emission
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will aims to publish original research and review articles related to carbon related and low-dimensional nanomaterials. Research topics include, but are not limited to, the following:

  • Fabrication and characterization techniques, and applications of carbon related and low-dimensional nanomaterials;
  • Structural, electonic, magnetic, and optical properties carbon related and low-dimensional nanomaterials;

This Special Issue will portray the state of carbon-related and emerging low-dimensional nanomaterials research and will more clearly present the progress in this field of nano-scale science and technologies, with the hope of promoting communication and collaboration among researchers in this field worldwide.

Prof. Dr. Hiroshi Furuta
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • graphene
  • carbon nanotubes
  • layered III–VI metal chalcogenides
  • low-dimensional semiconductor nanomaterials
  • low-dimensional photovoltaic nanomaterials
  • low-dimensional electron nanomaterials
  • low-dimensional optical nanomaterials

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 2959 KiB  
Article
Impact of Single-Walled Carbon Nanotube Functionalization on Ion and Water Molecule Transport at the Nanoscale
by Alia Mejri, Nicolas Arroyo, Guillaume Herlem, John Palmeri, Manoel Manghi, François Henn and Fabien Picaud
Nanomaterials 2024, 14(1), 117; https://doi.org/10.3390/nano14010117 - 03 Jan 2024
Cited by 1 | Viewed by 979
Abstract
Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes [...] Read more.
Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO groups is investigated for different concentrations of group functions. Full article
Show Figures

Figure 1

24 pages, 18859 KiB  
Article
CNT-PUFs: Highly Robust and Heat-Tolerant Carbon-Nanotube-Based Physical Unclonable Functions
by Florian Frank, Simon Böttger, Nico Mexis, Nikolaos Athanasios Anagnostopoulos, Ali Mohamed, Martin Hartmann, Harald Kuhn, Christian Helke, Tolga Arul, Stefan Katzenbeisser and Sascha Hermann
Nanomaterials 2023, 13(22), 2930; https://doi.org/10.3390/nano13222930 - 11 Nov 2023
Viewed by 810
Abstract
In this work, we explored a highly robust and unique Physical Unclonable Function (PUF) based on the stochastic assembly of single-walled Carbon NanoTubes (CNTs) integrated within a wafer-level technology. Our work demonstrated that the proposed CNT-based PUFs are exceptionally robust with an average [...] Read more.
In this work, we explored a highly robust and unique Physical Unclonable Function (PUF) based on the stochastic assembly of single-walled Carbon NanoTubes (CNTs) integrated within a wafer-level technology. Our work demonstrated that the proposed CNT-based PUFs are exceptionally robust with an average fractional intra-device Hamming distance well below 0.01 both at room temperature and under varying temperatures in the range from 23 C to 120 C. We attributed the excellent heat tolerance to comparatively low activation energies of less than 40 meV extracted from an Arrhenius plot. As the number of unstable bits in the examined implementation is extremely low, our devices allow for a lightweight and simple error correction, just by selecting stable cells, thereby diminishing the need for complex error correction. Through a significant number of tests, we demonstrated the capability of novel nanomaterial devices to serve as highly efficient hardware security primitives. Full article
Show Figures

Figure 1

Back to TopTop