Controlled Synthesis and Catalytic Applications of Oxide-Based Nanoparticles

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Energy and Catalysis".

Deadline for manuscript submissions: closed (20 December 2024) | Viewed by 2408

Special Issue Editor


E-Mail Website
Guest Editor
Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, China
Interests: porous photocatalytic nanomaterials for solar energy conversion; energy and environmental applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Due to the increasingly polluted environment and the gradual depletion of fossil fuel reserves, the development of renewable technologies for environmental remediation and energy production is highly desirable. Over recent decades, the catalytic application of oxide-based nanoparticles has attracted wide attention. By precisely manipulating the size, shape, and composition of oxide-based nanoparticles, scientists can tailor their properties for enhanced catalytic activity. These engineered materials find applications in various industries, offering new possibilities for efficient and sustainable processes.

This Special Issue will present comprehensive research outlining progress on the fabrication and application of oxide-based nanoparticles. We are pleased to invite you to contribute original and review articles regarding nanoparticles for catalytic applications. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following:

  • Photocatalysis, electrocatalysis, heterogeneous catalysis;
  • Catalytic water splitting,
  • Catalytic environmental remediation;
  • Controlled synthesis of oxide-based nanoparticles.

We look forward to receiving your contributions.

Prof. Dr. Wei Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxide-based nanoparticles
  • photocatalysis
  • electrocatalysis
  • heterogeneous catalysis
  • water splitting
  • environmental remediation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 8468 KiB  
Article
Construction of Ternary Ce Metal–Organic Framework/Bi/BiOCl Heterojunction towards Optimized Photocatalytic Performance
by Teng Gao, Hongqi Chu, Shijie Wang, Zhenzi Li and Wei Zhou
Nanomaterials 2024, 14(16), 1352; https://doi.org/10.3390/nano14161352 - 15 Aug 2024
Cited by 1 | Viewed by 2093
Abstract
Photocatalysis is the most promising green approach to solve antibiotic pollution in water, but the actual treatment effect is limited by photocatalytic activity. Herein, Bi and BiOCl were loaded onto the surface of Ce-MOF (metal–organic framework) using an electrostatic adsorption method, and a [...] Read more.
Photocatalysis is the most promising green approach to solve antibiotic pollution in water, but the actual treatment effect is limited by photocatalytic activity. Herein, Bi and BiOCl were loaded onto the surface of Ce-MOF (metal–organic framework) using an electrostatic adsorption method, and a special ternary heterojunction of Ce/Bi/BiOCl was successfully prepared as a photocatalyst for the degradation of tetracycline (TC). FTIR demonstrated that the obtained photocatalyst contains functional groups such as -COOH belonging to Ce-MOF and characteristic crystal planes of Bi and BiOCl, indicating the successful construction of a ternary photocatalyst. The results of UV–vis absorption spectra confirm that the band gap of Ce/Bi/BiOCl heterojunction is reduced from 3.35 eV to 2.7 eV, resulting in an enhanced light absorption capability in the visible light region. The special ternary heterojunction constructed by Ce-MOF, Bi, and BiOCl could achieve a narrow band gap and reasonable band structure, thereby enhancing the separation of photogenerated charges. Consequently, the photocatalytic performance of the Ce/Bi/BiOCl ternary heterojunction was significantly enhanced compared to Ce-MOF, Bi, and BiOCl. Therefore, Ce/Bi/BiOCl can achieve a photocatalytic degradation rate of 97.7% within 20 min, which is much better than Bi (14.8%) and BiOCl (67.9%). This work successfully constructed MOF-based ternary photocatalysts and revealed the relationship between ternary heterojunctions and photocatalytic activity. This provides inspiration for constructing other heterogeneous catalysts for use in the field of photocatalysis. Full article
Show Figures

Figure 1

Back to TopTop