Ultrafast Laser Processing for High-Aspect-Ratio Structures
Abstract
1. Introduction
2. The Multiphoton Absorption and Threshold Effect in Ultrafast Laser Processing
3. Filamentation Processing
4. Bessel Beam Processing
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Srinivasan, R.; Sutcliffe, E.; Braren, B. Ablation and Etching of Polymethylmethacrylate by Very Short (160 Fs) Ultraviolet (308 Nm) Laser Pulses. Appl. Phys. Lett. 1987, 51, 1285–1287. [Google Scholar] [CrossRef]
- Tan, D.; Sharafudeen, K.N.; Yue, Y.; Qiu, J. Femtosecond Laser Induced Phenomena in Transparent Solid Materials: Fundamentals and Applications. Prog. Mater. Sci. 2016, 76, 154–228. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycioglu, H.; Elahi, P.; Çetin, B.; Kesim, D.K.; Akçaalan, Ö.; Yavas, S.; Asik, M.D.; Öktem, B.; Hoogland, H.; et al. Ablation-Cooled Material Removal with Ultrafast Bursts of Pulses. Nature 2016, 537, 84–88. [Google Scholar] [CrossRef]
- Zhou, N.; Yuan, S.M.; Gao, M.X.; Zhang, W.; Zhang, J.Q.; Hu, T.R. Investigations on the Oxidation Behavior and Removal Mechanism of Sic/Sic Composites by Multi-Pulse Femtosecond Laser Ablation. J. Mater. Res. Technol. 2023, 26, 3408–3425. [Google Scholar] [CrossRef]
- Leitz, K.H.; Redlingshöfer, B.; Reg, Y.; Otto, A.; Schmidt, M. Metal Ablation with Short and Ultrashort Laser Pulses. Phys. Procedia 2011, 12, 230–238. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Femtosecond Laser Three-Dimensional Micro- and Nanofabrication. Appl. Phys. Rev. 2014, 1, 041303. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C.B. Bessel and Annular Beams for Materials Processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Olson, R.W.; Swope, W.C. Laser Drilling with Focused Gaussian Beams. J. Appl. Phys. 1992, 72, 3686–3696. [Google Scholar] [CrossRef]
- Uchtmann, H.; He, C.; Gillner, A. High Precision and High Aspect Ratio Laser Drilling—Challenges and Solutions. In Proceedings of the 2016 SPIE LASE, San Francisco, CA, USA, 16–18 February 2016; Volume 9741, p. 974106. [Google Scholar]
- Huang, H.; Yang, L.M.; Liu, J. Micro-Hole Drilling and Cutting Using Femtosecond Fiber Laser. Opt. Eng. 2014, 53, 051513. [Google Scholar] [CrossRef]
- Jedrkiewicz, O.; Kumar, S.; Sotillo, B.; Bollani, M.; Chiappini, A.; Ferrari, M.; Ramponi, R.; Di Trapani, P.; Eaton, S.M. High Precision and High Aspect Ratio Laser Drilling—Challenges and Solutions Surface for Versatile Microfluidic and Sensing Applications. Opt. Mater. Express 2017, 7, 1962–1970. [Google Scholar] [CrossRef]
- Zeng, C.; Tian, W.; Hua, L. A Comprehensive Study of Thermal Damage Consequent to Laser Surface Treatment. Mater. Sci. Eng. A 2013, 564, 381–388. [Google Scholar] [CrossRef]
- Bhar, G.C.; Chaudhary, A.K.; Kumbhakar, P. Study of Laser Induced Damage Threshold and Effect of Inclusions in Some Nonlinear Crystals. Appl. Surf. Sci. 2000, 161, 155–162. [Google Scholar] [CrossRef]
- Joglekar, A.P.; Liu, H.; Spooner, G.J.; Meyhöfer, E.; Mourou, G.; Hunt, A.J. A Study of the Deterministic Character of Optical Damage by Femtosecond Laser Pulses and Applications to Nanomachining. Appl. Phys. B 2003, 77, 25–30. [Google Scholar] [CrossRef]
- Le Harzic, R.; Huot, N.; Audouard, E.; Jonin, C.; Laporte, P.; Valette, S.; Fraczkiewicz, A.; Fortunier, R. Comparison of Heat Affected Zone Due to Nanosecond and Femtosecond Laser Pulses Using Transmission Electronic Microscopy. Appl. Phys. Lett. 2002, 80, 3886–3888. [Google Scholar] [CrossRef]
- Nedialkov, N.N.; Imamova, S.E.; Atanasov, P.A. Ablation of Metals by Ultrashort Laser Pulses. J. Phys. D Appl. Phys. 2004, 37, 638. [Google Scholar] [CrossRef]
- Kondo, T.; Yamasaki, K.; Juodkazis, S.; Matsuo, S.; Mizeikis, V.; Misawa, H. Three-Dimensional Microfabrication by Femtosecond Pulses in Dielectrics. Thin Solid Films 2004, 453–454, 550–556. [Google Scholar] [CrossRef]
- Cao, X.W.; Chen, Q.D.; Fan, H.; Zhang, L.; Juodkazis, S.; Sun, H.B. Liquid-Assisted Femtosecond Laser Precision-Machining of Silica. Nanomaterials 2018, 8, 287. [Google Scholar] [CrossRef]
- Macernyte, L.; Skruibis, J.; Vaicaitis, V.; Sirutkaitis, R.; Balachninaite, O. Femtosecond Laser Micromachining of Soda-Lime Glass in Ambient Air and under Various Aqueous Solutions. Micromachines 2019, 10, 354. [Google Scholar] [CrossRef]
- Sundaram, S.K.; Mazur, E. Inducing and Probing Non-Thermal Transitions in Semiconductors Using Femtosecond Laser Pulses. Nat. Mater. 2002, 1, 217–224. [Google Scholar] [CrossRef]
- Gattass, R.; Mazur, E. Femtosecond Laser Micromachining in Transparent Materials. Nat. Photonics 2008, 2, 219–225. [Google Scholar] [CrossRef]
- Yokoshi, N.; Ishihara, H. Giant Multiphoton Absorption in Silicon. Nat. Photonics 2018, 12, 125–126. [Google Scholar] [CrossRef]
- Du, D.; Liu, X.; Korn, G.; Squier, J.; Mourou, G. Laser-Induced Breakdown by Impact Ionization in Sio2 with Pulse Widths from 7 Ns to 150 Fs. Appl. Phys. Lett. 1994, 64, 3071–3073. [Google Scholar] [CrossRef]
- Suzuura, H.; Ando, T. Phonons and Electron-Phonon Scattering in Carbon Nanotubes. Phys. Rev. B 2002, 65, 235412. [Google Scholar] [CrossRef]
- Liu, X.; Du, D.; Mourou, G. Laser Ablation and Micromachining with Ultrashort Laser Pulses. IEEE J. Quantum Electron. 1997, 33, 1706–1716. [Google Scholar] [CrossRef]
- Tanaka, T.; Sun, H.-B.; Kawata, S. Rapid Sub-Diffraction-Limit Laser Micro/Nanoprocessing in a Threshold Material System. Appl. Phys. Lett. 2002, 80, 312–314. [Google Scholar] [CrossRef]
- Wood, R.M.; Taylor, R.T.; Rouse, R.L. Laser Damage in Optical Materials at 1.06 Μm. Opt. Laser Technol. 1975, 7, 105–111. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Liu, K.; Cao, T.; Hong, M.H. Microsphere Femtosecond Laser Sub-50 Nm Structuring in Far Field Via Non-Linear Absorption. Optoelectron. Adv. 2023, 6, 230029. [Google Scholar] [CrossRef]
- Glezer, E.N.; Milosavljevic, M.; Huang, L.; Finlay, R.J.; Her, T.H.; Callan, J.P.; Mazur, E. Three-Dimensional Optical Storage inside Transparent Materials. Opt. Lett. 1996, 21, 2023–2025. [Google Scholar] [CrossRef]
- Takada, K.; Sun, H.B.; Kawata, S. Improved Spatial Resolution and Surface Roughness in Photopolymerization-Based Laser Nanowriting. Appl. Phys. Lett. 2005, 86, 071122. [Google Scholar] [CrossRef]
- Itoh, K.; Watanabe, W.; Nolte, S.; Schaffer, C.B. Ultrafast Processes for Bulk Modification of Transparent Materials. MRS Bull. 2006, 31, 620–625. [Google Scholar] [CrossRef]
- Liao, Y.; Zeng, B.; Qiao, L.; Liu, L.; Sugioka, K.; Cheng, Y. Threshold Effect in Femtosecond Laser Induced Nanograting Formation in Glass: Influence of the Pulse Duration. Appl. Phys. A 2014, 114, 223–230. [Google Scholar] [CrossRef]
- Chen, T.Q.; Zhang, G.D.; Wang, Y.S.; Li, X.L.; Stoian, R.; Cheng, G.H. Reconstructing of Embedded High-Aspect-Ratio Nano-Voids Generated by Ultrafast Laser Bessel Beams. Micromachines 2020, 11, 671. [Google Scholar] [CrossRef]
- Liu, X.; Clady, R.; Grojo, D.; Utéza, O.; Sanner, N. Engraving Depth-Controlled Nanohole Arrays on Fused Silica by Direct Short-Pulse Laser Ablation. Adv. Mater. Interfaces 2023, 10, 2202189. [Google Scholar] [CrossRef]
- Hercher, M. Laser-Induced Damage in Transparent Media. J. Opt. Soc. Am. 2009, 54, 563. [Google Scholar]
- Yao, Z.L.; Jiang, L.; Li, X.W.; Wang, A.D.; Wang, Z.; Li, M.; Lu, Y.F. Non-Diffraction-Length, Tunable, Bessel-Like Beams Generation by Spatially Shaping a Femtosecond Laser Beam for High-Aspect-Ratio Micro-Hole Drilling. Opt. Express 2018, 26, 21960–21968. [Google Scholar] [CrossRef]
- Rapp, L.; Meyer, R.; Giust, R.; Furfaro, L.; Jacquot, M.; Lacourt, P.A.; Dudley, J.M.; Courvoisier, F. High Aspect Ratio Micro-Explosions in the Bulk of Sapphire Generated by Femtosecond Bessel Beams. Sci. Rep. 2016, 6, 34286. [Google Scholar] [CrossRef]
- Velpula, P.K.; Bhuyan, M.K.; Courvoisier, F.; Zhang, H.; Colombier, J.P.; Stoian, R. Spatio-Temporal Dynamics in Nondiffractive Bessel Ultrafast Laser Nanoscale Volume Structuring. Laser Photonics Rev. 2016, 10, 230–244. [Google Scholar] [CrossRef]
- Kiselev, D.; Woeste, L.; Wolf, J.P. Filament-Induced Laser Machining (Film). Appl. Phys. B 2010, 100, 515–520. [Google Scholar] [CrossRef]
- Braun, A.; Korn, G.; Liu, X.; Du, D.; Squier, J.; Mourou, G. Self-Channeling of High-Peak-Power Femtosecond Laser Pulses in Air. Opt. Lett. 1995, 20, 73–75. [Google Scholar] [CrossRef]
- Ivanov, N.G.; Losev, V.F. Kerr Nonlinearity Effect on Femtosecond Pulse Radiation Filamentation in Air. Atmos. Ocean. Opt. 2017, 30, 331–336. [Google Scholar] [CrossRef]
- Feit, M.D.; Fleck, J.A., Jr. Effect of Refraction on Spot-Size Dependence of Laser-Induced Breakdown. Appl. Phys. Lett. 1974, 24, 169–172. [Google Scholar] [CrossRef]
- Dharmadhikari, J.A.; Deshpande, R.A.; Nath, A.; Dota, K.; Mathur, D.; Dharmadhikari, A.K. Effect of Group Velocity Dispersion on Supercontinuum Generation and Filamentation in Transparent Solids. Appl. Phys. B 2014, 117, 471–479. [Google Scholar] [CrossRef]
- Vaičaitis, V.; Butkus, R.; Balachninaitė, O.; Morgner, U.; Babushkin, I. Diffraction-Enhanced Femtosecond White-Light Filaments in Air. Appl. Phys. B 2018, 124, 221. [Google Scholar] [CrossRef]
- Rothenberg, J.E. Space—Time Focusing: Breakdown of the Slowly Varying Envelope Approximation in the Self-Focusing of Femtosecond Pulses. Opt. Lett. 1992, 17, 1340. [Google Scholar] [CrossRef] [PubMed]
- Théberge, F.; Liu, W.; Simard, P.T.; Becker, A.; Chin, S.L. Plasma Density inside a Femtosecond Laser Filament in Air: Strong Dependence on External Focusing. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 74, 036406. [Google Scholar] [CrossRef]
- Nibbering, E.T.; Curley, P.F.; Grillon, G.; Prade, B.S.; Franco, M.A.; Salin, F.; Mysyrowicz, A. Conical Emission from Self-Guided Femtosecond Pulses in Air. Opt. Lett. 1996, 21, 62–65. [Google Scholar] [CrossRef]
- Kasparian, J.; Sauerbrey, R.; Chin, S.L. The Critical Laser Intensity of Self-Guided Light Filaments in Air. Appl. Phys. B 2000, 71, 877–879. [Google Scholar] [CrossRef]
- Anguiano-Morales, M. Self-Healing Properties of Asymmetric Bessel Beams. Opt. Quantum Electron. 2018, 50, 363. [Google Scholar] [CrossRef]
- Čižmár, T.; Dholakia, K. Tunable Bessel Light Modes: Engineering the Axial Propagation. Opt. Express 2009, 17, 15558–15570. [Google Scholar] [CrossRef]
- Tan, J.; Yu, R.; Xiao, L. Bessel-Like Beams Generated Via Fiber-Based Polymer Microtips. Opt. Lett. 2019, 44, 1007–1010. [Google Scholar] [CrossRef]
- Stoian, R.; Bhuyan, M.K.; Zhang, G.; Cheng, G.; Meyer, R.; Courvoisier, F. Ultrafast Bessel Beams: Advanced Tools for Laser Materials Processing. Adv. Opt. Technol. 2018, 7, 165–174. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, F.; Jiang, L.; Lu, Y.; Zhao, W.; Xie, J.; Li, X. Femtosecond Bessel-Beam-Assisted High-Aspect-Ratio Microgroove Fabrication in Fused Silica. Chin. Opt. Lett. 2015, 13, 041405. [Google Scholar] [CrossRef]
- Hendricks, F.; Au, J.A.D.; Matylitsky, V.V. High Aspect Ratio Microstructuring of Transparent Dielectrics Using Femtosecond Laser Pulses: Method for Optimization of the Machining Throughput. Appl. Phys. A. 2014, 117, 149–153. [Google Scholar] [CrossRef]
- Courvoisier, F.; Stoian, R.; Couairon, A. Ultrafast Laser Micro- and Nano-Processing with Nondiffracting and Curved Beams: Invited Paper for the Section: Hot Topics in Ultrafast Lasers. Opt. Laser Technol. 2016, 80, 125–137. [Google Scholar] [CrossRef]
- Zhang, Y.; Lowe, R.M.; Harvey, E.; Hannaford, P.; Endo, A. High Aspect-Ratio Micromachining of Polymers with an Ultrafast Laser. Appl. Surf. Sci. 2002, 186, 345–351. [Google Scholar] [CrossRef]
- Liu, H.G.; Li, Y.; Lin, W.X.; Hong, M.H. High-Aspect-Ratio Crack-Free Microstructures Fabrication on Sapphire by Femtosecond Laser Ablation. Opt. Laser Technol. 2020, 132, 106472. [Google Scholar] [CrossRef]
- Lee, S.; Park, B.; Kim, J.S.; Kim, T.-I. Designs and Processes toward High-Aspect-Ratio Nanostructures at the Deep Nanoscale: Unconventional Nanolithography and Its Applications. Nanotechnology 2016, 27, 474001. [Google Scholar] [CrossRef]
- Martínez-Herrero, R.; Carnicer, A.; Juvells, I.; Sanz, A.S. Uncertainty Principle for Axial Power Content of Highly Focused Fields. Opt. Express 2020, 28, 29676–29690. [Google Scholar] [CrossRef]
- Kagoshima, Y.; Takayama, Y. Inverse-Phase Composite Zone Plate Providing Deeper Focus Than the Normal Diffraction-Limited Depth of X-Ray Microbeams. J. Synchrotron Radiat. 2019, 26, 52–58. [Google Scholar] [CrossRef]
- Birk, U.; Hase Jv Cremer, C. Super-Resolution Microscopy with Very Large Working Distance by Means of Distributed Aperture Illumination. Sci. Rep. 2017, 7, 3685. [Google Scholar] [CrossRef]
- Kononenko, V.V.; Konov, V.I. Fs Laser Induced Reversible and Irreversible Processes in Transparent Bulk Material; Springer International Publishing: Cham, Switzerland, 2014; pp. 247–268. [Google Scholar]
- Joglekar, A.P.; Liu, H.-H.; Meyhöfer, E.; Mourou, G.; Hunt, A.J. Optics at Critical Intensity: Applications to Nanomorphing. Proc. Natl. Acad. Sci. USA 2004, 101, 5856–5861. [Google Scholar] [CrossRef] [PubMed]
- Kylstra, N.J.; Joachain, C.J.; Dörr, M. Theory of Multiphoton Ionization of Atoms; Springer: Boston, MA, USA, 2001; pp. 15–36. [Google Scholar]
- Mark, T.D. Fundamental Aspects of Electron Impact Ionization. Int. J. Mass Spectrom. Ion Phys. 1982, 45, 125–145. [Google Scholar] [CrossRef]
- Pronko, P.P.; VanRompay, P.A.; Horvath, C.; Loesel, F.; Juhasz, T.; Liu, X.; Mourou, G. Avalanche Ionization and Dielectric Breakdown in Silicon with Ultrafast Laser Pulses. Phys. Rev. B 1998, 58, 2387–2390. [Google Scholar] [CrossRef]
- Wellershoff, S.S.; Hohlfeld, J.; Güdde, J.; Matthias, E. The Role of Electron–Phonon Coupling in Femtosecond Laser Damage of Metals. Appl. Phys. A 1999, 69, S99–S107. [Google Scholar]
- Kawata, S.; Sun, H.-B.; Tanaka, T.; Takada, K. Finer Features for Functional Microdevices. Nature 2001, 412, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Malinauskas, M.; Farsari, M.; Piskarskas, A.; Juodkazis, S. Ultrafast Laser Nanostructuring of Photopolymers: A Decade of Advances. Phys. Rep. 2013, 533, 1–31. [Google Scholar] [CrossRef]
- Küper, S.; Stuke, M. Femtosecond Uv Excimer Laser Ablation. Appl. Phys. B 1987, 44, 199–204. [Google Scholar] [CrossRef]
- Hacker, E.; Lauth, H.; Weissbrodt, P. Review of Structural Influences on the Laser Damage Thresholds of Oxide Coatings. SPIE 1996, 2714, 316–330. [Google Scholar]
- Glezer, E.; Huang, L.; Finlay, R.; Her, T.-H.; Callan, J.; Schaffer, C.; Mazur, E. Ultrafast Laser-Induced Microexplosions in Transparent Materials. SPIE 1997, 2966, 392–403. [Google Scholar]
- Sugioka, K.; Cheng, Y. A Tutorial on Optics for Ultrafast Laser Materials Processing: Basic Microprocessing System to Beam Shaping and Advanced Focusing Methods. Adv. Opt. Technol. 2012, 1, 353–364. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast Lasers-Reliable Tools for Advanced Materials Processing. Light Sci. Appl. 2014, 3, 149. [Google Scholar] [CrossRef]
- Sopeña, P.; Garcia-Lechuga, M.; Wang, A.; Grojo, D. Ultrafast Laser Stabilization by Nonlinear Absorption for Enhanced-Precision Material Processing. Opt. Lett. 2022, 47, 993–996. [Google Scholar] [CrossRef]
- Garcia-Lechuga, M.; Gebrayel El Reaidy, G.; Ning, H.; Delaporte, P.; Grojo, D. Assessing the Limits of Determinism and Precision in Ultrafast Laser Ablation. Appl. Phys. Lett. 2020, 117, 171604. [Google Scholar] [CrossRef]
- Askaryan, G.A. Effect of the Gradient of a Strong Electromagnetic Ray on Electrons and Atoms. Sov. Phys. JETP 1962, 15, 1088–1090. [Google Scholar]
- Brodeur, A.; Chien, C.Y.; Ilkov, F.A.; Chin, S.L.; Kosareva, O.G.; Kandidov, V.P. Moving Focus in the Propagation of Ultrashort Laser Pulses in Air. Opt. Lett. 1997, 22, 304–306. [Google Scholar] [CrossRef]
- Tzortzakis, S.; Papazoglou, D.G.; Zergioti, I. Long-Range Filamentary Propagation of Subpicosecond Ultraviolet Laser Pulses in Fused Silica. Opt. Lett. 2006, 31, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Ji, L. Ultrafast Laser Filamentation in Transparent Solids. Ultrafast Sci. 2023, 3, 0023. [Google Scholar] [CrossRef]
- Kasparian, J.; Wolf, J.P. Physics and Applications of Atmospheric Nonlinear Optics and Filamentation. Opt. Express 2008, 16, 466–493. [Google Scholar] [CrossRef]
- Tochitsky, S.; Welch, E.; Polyanskiy, M.; Pogorelsky, I.; Panagiotopoulos, P.; Kolesik, M.; Wright, E.M.; Koch, S.W.; Moloney, J.V.; Pigeon, J.; et al. Megafilament in Air Formed by Self-Guided Terawatt Long-Wavelength Infrared Laser. Nat. Photonics 2019, 13, 41–46. [Google Scholar] [CrossRef]
- Mahmoud Aghdami, K.; Rahnama, A.; Ertorer, E.; Herman, P.R. Laser Nano-Filament Explosion for Enabling Open-Grating Sensing in Optical Fibre. Nat. Commun. 2021, 12, 6344. [Google Scholar] [CrossRef]
- Tokarev, V.N.; Melnikov, I.V. A Strategy for Achieving Smooth Filamentation Cutting of Transparent Materials with Ultrafast Lasers. Appl. Sci. 2021, 11, 1732. [Google Scholar] [CrossRef]
- Talebpour, A.; Abdel-Fattah, M.; Chin, S.L. Focusing Limits of Intense Ultrafast Laser Pulses in a High Pressure Gas: Road to New Spectroscopic Source. Opt. Commun. 2000, 183, 479–484. [Google Scholar] [CrossRef]
- Qi, P.; Qian, W.; Guo, L.; Xue, J.; Zhang, N.; Wang, Y.; Zhang, Z.; Zhang, Z.; Lin, L.; Sun, C.; et al. Sensing with Femtosecond Laser Filamentation. Sensors 2022, 22, 7076. [Google Scholar] [CrossRef] [PubMed]
- Courvoisier, F. Ultrafast Laser Micro-Nano Structuring of Transparent Materials with High Aspect Ratio. In Handbook of Laser Micro- and Nano-Engineering; Sugioka, K., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–37. [Google Scholar]
- Couairon, A.; Mysyrowicz, A. Femtosecond Filamentation in Transparent Media. Phys. Rep. 2007, 441, 47–189. [Google Scholar] [CrossRef]
- Marburger, J.H. Self-Focusing: Theory. Prog. Quantum Electron. 1975, 4, 35–110. [Google Scholar] [CrossRef]
- Luo, L.; Wang, D.L.; Li, C.D.; Jiang, H.B.; Yang, H.; Gong, Q.H. Formation of Diversiform Microstructures in Wide-Bandgap Materials by Tight-Focusing Femtosecond Laser Pulses. J. Opt. A Pure Appl. Opt. 2002, 4, 105–110. [Google Scholar] [CrossRef]
- Sun, X.; Zeng, T.; Gao, H.; Zhang, S.; Liu, W. Power Dependent Filamentation of a Femtosecond Laser Pulse in Air by Focusing with an Axicon. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 094004. [Google Scholar] [CrossRef]
- Ahmed, F.; Shamim Ahsan, M.; Seop Lee, M.; Jun, M.B.G. Near-Field Modification of Femtosecond Laser Beam to Enhance Single-Shot Pulse Filamentation in Glass Medium. Appl. Phys. A 2014, 114, 1161–1165. [Google Scholar] [CrossRef]
- Xia, B.; Jiang, L.; Li, X.W.; Yan, X.L.; Zhao, W.W.; Lu, Y.F. High Aspect Ratio, High-Quality Microholes in Pmma: A Comparison between Femtosecond Laser Drilling in Air and in Vacuum. Appl. Phys. A. 2015, 119, 61–68. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Courvoisier, F.; Lacourt, P.A.; Jacquot, M.; Furfaro, L.; Withford, M.J.; Dudley, J.M. High Aspect Ratio Taper-Free Microchannel Fabrication Using Femtosecond Bessel Beams. Opt. Express 2010, 18, 566–574. [Google Scholar] [CrossRef]
- Amina; Ji, L.; Yan, T.; Wang, Y.; Li, L. Characteristics of 1064 Nm Picosecond Laser Induced Filamentary Tracks and Damages in Sapphire. Opt. Laser Technol. 2019, 116, 232–238. [CrossRef]
- Xu, X.; He, J.; He, J.; Xu, B.; Chen, R.; Wang, Y.; Yang, Y.; Wang, Y. Efficient Point-by-Point Bragg Grating Inscription in Sapphire Fiber Using Femtosecond Laser Filaments. Opt. Lett. 2021, 46, 2742–2745. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yan, Y.J.; Zhao, J.; Wang, W.J.; Liao, K. Research on Hole Depth in Femtosecond Laser Deep Micropore Processing Technology Based on Filament Effect. Optik 2022, 249, 168307. [Google Scholar] [CrossRef]
- Ren, G.; Ito, Y.; Sun, H.; Sugita, N. Temporal-Spatial Characteristics of Filament Induced by a Femtosecond Laser Pulse in Transparent Dielectrics. Opt. Express 2022, 30, 4954–4964. [Google Scholar] [CrossRef]
- Wang, J.J.; Guo, Y.J.; Song, X.W.; Lin, J.Q. Flexible Manipulation of the Onset and Terminal Positions of Femtosecond Laser Filamentation in Fused Silica Via Controlling Beam Profile before Axicon. Opt. Commun. 2022, 516, 128262. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.; Song, X.; Guo, K.; Lin, J. Multi-Dimensional Control of Femtosecond Laser Filaments by Inserting a Wedge Plate in the Forced Focusing Region. Phys. Plasma 2022, 29, 012301. [Google Scholar] [CrossRef]
- Vitek, D.N.; Adams, D.E.; Johnson, A.; Tsai, P.S.; Backus, S.; Durfee, C.G.; Kleinfeld, D.; Squier, J.A. Temporally Focused Femtosecond Laser Pulses for Low Numerical Aperture Micromachining through Optically Transparent Materials. Opt. Express 2010, 18, 18086–18094. [Google Scholar] [CrossRef]
- Lapointe, J.; Kashyap, R. A Simple Technique to Overcome Self-Focusing, Filamentation, Supercontinuum Generation, Aberrations, Depth Dependence and Waveguide Interface Roughness Using Fs Laser Processing. Sci. Rep. 2017, 7, 499. [Google Scholar] [CrossRef]
- Durnin, J. Exact Solutions for Nondiffracting Beams. I. The Scalar Theory. J. Opt. Soc. Am. A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Marcinkevičius, A.; Juodkazis, S.; Matsuo, S.; Mizeikis, V.; Misawa, H. Application of Bessel Beams for Microfabrication of Dielectrics by Femtosecond Laser. Jpn. J. Appl. Phys. 2001, 40, L1197. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Courvoisier, F.; Lacourt, P.A.; Jacquot, M.; Salut, R.; Furfaro, L.; Dudley, J.M. High Aspect Ratio Nanochannel Machining Using Single Shot Femtosecond Bessel Beams. Appl. Phys. Lett. 2010, 97, 081102. [Google Scholar] [CrossRef]
- Mitra, S.; Chanal, M.; Clady, R.; Mouskeftaras, A.; Grojo, D. Millijoule Femtosecond Micro-Bessel Beams for Ultra-High Aspect Ratio Machining. Appl. Opt. 2015, 54, 7358–7365. [Google Scholar] [CrossRef]
- Lu, Y.; Kai, L.; Chen, C.; Qing, Y.; Meng, Y.; Liu, Y.; Cheng, Y.; Hou, X.; Chen, F. Nanochannels with a 18-Nm Feature Size and Ultrahigh Aspect Ratio on Silica through Surface Assisting Material Ejection. Adv. Photonics Nexus 2022, 1, 026004. [Google Scholar] [CrossRef]
- Lu, Z.; Guo, Z.; Fan, M.; Guo, M.; Li, C.; Yao, Y.; Zhang, H.; Lin, W.; Liu, H.; Liu, B. Tunable Bessel Beam Shaping for Robust Atmospheric Optical Communication. J. Lightwave Technol. 2022, 40, 5097–5106. [Google Scholar] [CrossRef]
- Qin, F.; Huang, K.; Wu, J.; Teng, J.; Qiu, C.-W.; Hong, M. A Supercritical Lens Optical Label-Free Microscopy: Sub-Diffraction Resolution and Ultra-Long Working Distance. Adv. Mater. 2017, 29, 1602721. [Google Scholar] [CrossRef]
- Courvoisier, F.; Bhuyan, M.K.; Jacquot, M.; Lacourt, P.A.; Salut, R.; Furfaro, L.; Dudley, J.M. High Aspect Ratio Taper-Free Micro and Nano-Channel Fabrication in Glass with Ultrafast Nondiffracting Bessel Beams. In Proceedings of the 2011 SPIE LASE, San Francisco, CA, USA, 22–27 January 2011; Volume 7921, p. 79210K. [Google Scholar]
- Song, Y.P.; Xu, J.; Liu, Z.X.; Zhang, A.D.; Yu, J.P.; Qi, J.; Chen, W.; Cheng, Y. Fabrication of High-Aspect-Ratio Fused Silica Microstructures with Large Depths Using Bessel-Beam Femtosecond Laser-Assisted Etching. Opt. Laser Technol. 2024, 170, 110305. [Google Scholar] [CrossRef]
- Fan, D.; Wang, L.; Ekinci, Y. Nanolithography Using Bessel Beams of Extreme Ultraviolet Wavelength. Sci. Rep. 2016, 6, 31301. [Google Scholar] [CrossRef]
- Stoian, R.; Bhuyan, M.K.; Rudenko, A.; Colombier, J.-P.; Cheng, G. High-Resolution Material Structuring Using Ultrafast Laser Non-Diffractive Beams. Adv. Phys.-X 2019, 4, 1659180. [Google Scholar] [CrossRef]
- Xie, Q.; Li, X.W.; Jiang, L.; Xia, B.; Yan, X.L.; Zhao, W.W.; Lu, Y.F. High-Aspect-Ratio, High-Quality Microdrilling by Electron Density Control Using a Femtosecond Laser Bessel Beam. Appl. Phys. A 2016, 122, 136. [Google Scholar] [CrossRef]
- Bhuyan, M.K.; Velpula, P.K.; Colombier, J.P.; Olivier, T.; Faure, N.; Stoian, R. Single-Shot High Aspect Ratio Bulk Nanostructuring of Fused Silica Using Chirp-Controlled Ultrafast Laser Bessel Beams. Appl. Phys. Lett. 2014, 104, 021107. [Google Scholar] [CrossRef]
- Mori, S. Side Lobe Suppression of a Bessel Beam for High Aspect Ratio Laser Processing. Precis. Eng. 2015, 39, 79–85. [Google Scholar] [CrossRef]
- Won, S.J.; Jeong, S. Laser Drilling of Stainless Steel Foil with Reduced Sidelobe Ablation Using a Spatially Filtered Bessel–Gauss Beam. J. Micromech. Microeng. 2022, 32, 115001. [Google Scholar] [CrossRef]
- Durnin, J.; Miceli, J.J.; Eberly, J.H. Diffraction-Free Beams. Phys. Rev. Lett. 1987, 58, 1499–1501. [Google Scholar] [CrossRef]
- Kohno, M.; Matsuoka, Y. Microfabrication and Drilling Using Diffraction-Free Pulsed Laser Beam Generated with Axicon Lens. JSME Int. J. Ser. B 2004, 47, 497–500. [Google Scholar] [CrossRef]
- Wang, H.R.; Zhang, F.; Ding, K.W.; Duan, J. Non-Diffraction-Length Bessel-Beam Femtosecond Laser Drilling of High-Aspect-Ratio Microholes in Pmma. OPTIK 2021, 229, 166295. [Google Scholar] [CrossRef]
- Müller, A.; Wapler, M.C.; Wallrabe, U. Micro-Optical System for Depth-Controlled Bessel Beam Arrays. In Proceedings of the 2019 International Conference on Optical MEMS and Nanophotonics (OMN), Daejeon, Republic of Korea, 28 July–1 August 2019; pp. 184–185. [Google Scholar]
- Muller, A.; Wapler, M.C.; Wallrabe, U. Segmented Bessel Beams. Opt. Express 2017, 25, 22640–22647. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Sikora, A.; Sentis, M.; Utéza, O.; Stoian, R.; Zhao, W.; Cheng, G.; Sanner, N. Truncated Gaussian-Bessel Beams for Short-Pulse Processing of Small-Aspect-Ratio Micro-Channels in Dielectrics. Opt. Express 2019, 27, 6996–7008. [Google Scholar] [CrossRef]
- Datta, S.; Clady, R.; Grojo, D.; Utéza, O.; Sanner, N. Scalable Nanophotonic Structures inside Silica Glass Laser-Machined by Intense Shaped Beams. Laser Photonics Rev. 2024; 2301365, early view. [Google Scholar]
- Ouadghiri-Idrissi, I.; Giust, R.; Froehly, L.; Jacquot, M.; Furfaro, L.; Dudley, J.M.; Courvoisier, F. Arbitrary Shaping of on-Axis Amplitude of Femtosecond Bessel Beams with a Single Phase-Only Spatial Light Modulator. Opt. Express 2016, 24, 11495–11504. [Google Scholar] [CrossRef]
- Lutz, C.; Schwarz, S.; Marx, J.; Esen, C.; Hellmann, R. Multi-Bessel Beams Generated by an Axicon and a Spatial Light Modulator for Drilling Applications. Photonics 2023, 10, 413. [Google Scholar] [CrossRef]
- Efron, U. Spatial Light Modulators for Optical Computing and Information Processing. In Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences. Volume 1: Architecture Track, Kailua-Kona, HI, USA, 3–6 January 1989; Volume 1, pp. 416–423. [Google Scholar]
- Kong, D.; Sun, X.; Hu, Y.; Duan, J.A. Theoretical and Experimental Research on a Spatially Modulated Femtosecond Bessel-Like Laser for Microdrilling in Silica Glass. Opt. Commun. 2023, 542, 129594. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, C.; Yin, K.; Dong, X.; Chu, D.; Duan, J.A. Rapid Fabrication of Cylindrical Microlens Array by Shaped Femtosecond Laser Direct Writing. Appl. Phys. A 2016, 122, 633. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, L.; Li, T.; Huang, J.; Yi, P.; Zhang, L.; Li, M.; Zhang, X.; Li, X. Efficient Fabrication of Infrared Antireflective Microstructures on a Curved Diamond-Zns Composite Surface by Using Femtosecond Bessel-Like Beams. Opt. Express 2023, 31, 28670–28682. [Google Scholar] [CrossRef]
- Jenne, M.; Flamm, D.; Ouaj, T.; Hellstern, J.; Kleiner, J.; Grossmann, D.; Koschig, M.; Kaiser, M.; Kumkar, M.; Nolte, S. High-Quality Tailored-Edge Cleaving Using Aberration-Corrected Bessel-Like Beams. Opt. Lett. 2018, 43, 3164–3167. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.M.; Todi, A.; Tang, H.M. Bessel Beam Generation Using a Segmented Deformable Mirror. Appl. Opt. 2018, 57, 4677–4682. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Yu, J.; Tan, Y.; Chu, W.; Zhou, C.; Cheng, Y.; Sugioka, K. Tailoring Femtosecond 1.5-Μm Bessel Beams for Manufacturing High-Aspect-Ratio through-Silicon Vias. Sci. Rep. 2017, 7, 40785. [Google Scholar] [CrossRef]
- Ouadghiri-Idrissi, I.; Dudley, J.M.; Courvoisier, F. Controlling Nonlinear Instabilities in Bessel Beams through Longitudinal Intensity Shaping. Opt. Lett. 2017, 42, 3785–3788. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Froehly, L.; Giust, R.; Hoyo, J.; Furfaro, L.; Billet, C.; Courvoisier, F. Extremely High-Aspect-Ratio Ultrafast Bessel Beam Generation and Stealth Dicing of Multi-Millimeter Thick Glass. Appl. Phys. Lett. 2019, 114, 201105. [Google Scholar] [CrossRef]
- Zhi, Z.; Na, Q.; Xie, Q.; Chen, B.; Li, Y.; Liu, X.; Li, X.; Wang, L.; Lo, G.; Song, J. On-Chip Generation of Bessel–Gaussian Beam Via Concentrically Distributed Grating Arrays for Long-Range Sensing. Light Sci. Appl. 2023, 12, 92. [Google Scholar] [CrossRef]
- Li, Z.Q.; Allegre, O.; Li, L. Realising High Aspect Ratio 10 Nm Feature Size in Laser Materials Processing in Air at 800 Nm Wavelength in the Far-Field by Creating a High Purity Longitudinal Light Field at Focus. Light Sci. Appl. 2022, 11, 339. [Google Scholar] [CrossRef]
- Tsuru, Y.; Kozawa, Y.; Uesugi, Y.; Sato, S. Laser Nanoprocessing Via an Enhanced Longitudinal Electric Field of a Radially Polarized Beam. Opt. Lett. 2024, 49, 1405–1408. [Google Scholar] [CrossRef]
- Li, Z.-Z.; Fan, H.; Wang, L.; Zhang, X.; Zhao, X.-J.; Yu, Y.-H.; Xu, Y.-S.; Wang, Y.; Wang, X.-J.; Juodkazis, S.; et al. Super-Stealth Dicing of Transparent Solids with Nanometric Precision. Nat. Photonics 2024, 18, 799–808. [Google Scholar] [CrossRef]
- Zheng, J.-X.; Tian, K.-S.; Qi, J.-Y.; Guo, M.-R.; Liu, X.-Q. Advances in Fabrication of Micro-Optical Components by Femtosecond Laser with Etching Technology. Opt. Laser Technol. 2023, 167, 109793. [Google Scholar] [CrossRef]
- Asgari Sabet, R.; Ishraq, A.; Saltik, A.; Bütün, M.; Tokel, O. Laser Nanofabrication inside Silicon with Spatial Beam Modulation and Anisotropic Seeding. Nat. Commun. 2024, 15, 5786. [Google Scholar] [CrossRef] [PubMed]
- Žukauskas, A.; Reinhardt, C.; Chichkov, B.; Gadonas, R. Closely Packed Hexagonal Conical Microlens Array Fabricated by Direct Laser Photopolymerization. Appl. Opt. 2012, 51, 4995–5003. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Kedia, S.; Majumdar, A.G.; Subramanian, M.; Sinha, S. In Vitro Bioactivity and Biocompatibility of Femtosecond Laser-Modified Ti6al4v Alloy. Appl. Phys. A 2018, 124, 821. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Wu, D.; Zhang, Y.C.; Bian, Y.C.; Wang, C.W.; Li, J.W.; Chu, J.R.; Hu, Y.L. Femtosecond Laser Direct Writing of Functional Stimulus-Responsive Structures and Applications. Int. J. Extrem. Manuf. 2023, 5, 042012. [Google Scholar] [CrossRef]
- Ganguly, N.; Sopeña, P.; Grojo, D. Ultra-High-Aspect-Ratio Structures through Silicon Using Infrared Laser Pulses Focused with Axicon-Lens Doublets. Light Adv. Manuf. 2024, 5, 22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, M.; Zhao, X.; Fan, H.; Leng, R.; Yu, Y.; Li, A.; Gao, B. Ultrafast Laser Processing for High-Aspect-Ratio Structures. Nanomaterials 2024, 14, 1428. https://doi.org/10.3390/nano14171428
Qin M, Zhao X, Fan H, Leng R, Yu Y, Li A, Gao B. Ultrafast Laser Processing for High-Aspect-Ratio Structures. Nanomaterials. 2024; 14(17):1428. https://doi.org/10.3390/nano14171428
Chicago/Turabian StyleQin, Muyang, Xinjing Zhao, Hanyue Fan, Ruizhe Leng, Yanhao Yu, Aiwu Li, and Bingrong Gao. 2024. "Ultrafast Laser Processing for High-Aspect-Ratio Structures" Nanomaterials 14, no. 17: 1428. https://doi.org/10.3390/nano14171428
APA StyleQin, M., Zhao, X., Fan, H., Leng, R., Yu, Y., Li, A., & Gao, B. (2024). Ultrafast Laser Processing for High-Aspect-Ratio Structures. Nanomaterials, 14(17), 1428. https://doi.org/10.3390/nano14171428