error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
molecules-logo

Journal Browser

Journal Browser

Development of Food Packaging Materials, 2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 31 October 2026 | Viewed by 812

Special Issue Editor

Special Issue Information

Dear Colleagues,

Food packaging is an integral part of the modern food industry, as most food commodities reach the consumer in the form of packaged products. The initial objectives of packaging were to contain, protect, and provide convenience and communication to the consumer. Over time, packaging has evolved to incorporate the interaction between the package and the contained food product, aiming to better preserve product freshness/quality and safety. This is because consumers increasingly prefer fresh or lightly processed foodstuffs with extended shelf life. The main packaging materials intended to come in direct contact with foodstuffs include plastics, paper and paperboard, glass, and metals. Another aspect of primary importance in packaging is the extent to which waste coming from packaging materials affects the environment. Therefore, contemporary packaging materials should be recyclable to reduce environmental pollution. This Special Issue will focus on scientific and technological innovations in food packaging materials and packaging technologies, with the goal of enhancing the preservation of food quality and safety while protecting the environment. Examples of such advances in materials and processes include barrier materials, recyclable materials, active and intelligent materials, biodegradable materials, nanomaterials in packaging, adhesives, and printing materials, as well as the respective processes such as coating, dyeing, printing, recycling, modified atmosphere packaging, active packaging, intelligent packaging, aseptic packaging, and irradiation. Submissions of manuscripts from all related fields are welcome.

Prof. Dr. Michael Kontominas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plastics, glass, metals, paper/paperboard
  • biodegradable materials
  • recyclable materials
  • active and Intelligent materials
  • nanomaterials in packaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4476 KB  
Article
Tailoring PLA/Gelatin Film Properties for Food Packaging Using Deep Eutectic Solvents
by M. Cidália R. Castro, João Pereira, Mara Pires André, Pedro Pereira, Vasco Cruz, Pedro Veiga Rodrigues and Ana Vera Machado
Molecules 2026, 31(1), 39; https://doi.org/10.3390/molecules31010039 - 22 Dec 2025
Viewed by 301
Abstract
This work investigates the modification of poly(lactic acid) (PLA) film properties for food packaging applications through the incorporation of modified gelatin (Gel-mod) and a choline chloride/glycerol deep eutectic solvent (DES). PLA/Gel-mod/DES materials were melt-processed and evaluated with respect to structure, morphology, thermal and [...] Read more.
This work investigates the modification of poly(lactic acid) (PLA) film properties for food packaging applications through the incorporation of modified gelatin (Gel-mod) and a choline chloride/glycerol deep eutectic solvent (DES). PLA/Gel-mod/DES materials were melt-processed and evaluated with respect to structure, morphology, thermal and mechanical behavior, processability, wettability, barrier performance, and compostability. Two incorporation routes were investigated for adding Gel-mod into the PLA matrix: direct incorporation and masterbatch preparation. FTIR and SEM analyses confirmed improved interfacial interactions and more homogeneous dispersion when Gel-mod was directly incorporated, compared with the masterbatch route. DES acted as an effective plasticizer and nucleating agent, reducing Tg, increasing crystallinity, and enhancing processability while maintaining thermal stability. Mechanical properties decreased relative to neat PLA, primarily due to increased crystallinity and chain scission. PLA_4Gel-mod demonstrated a more balanced performance, with higher elongation at break and improved processability than the other formulations, likely due to its single processing cycle, which minimized PLA degradation. Increased hydrophilicity led to higher water vapor transmission rates, correlating with accelerated biodegradation. Overall, the synergistic incorporation of DES and gelatin provides a viable strategy to tailor PLA properties, enabling the development of compostable packaging films suitable for sustainable food contact applications. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials, 2nd Edition)
Show Figures

Graphical abstract

33 pages, 4400 KB  
Article
Carvacrol@ZnO and trans-Cinnamaldehyde@ZnO Nanohybrids for Poly-Lactide/tri-Ethyl Citrate-Based Active Packaging Films
by Areti A. Leontiou, Achilleas Kechagias, Anna Kopsacheili, Eleni Kollia, Yelyzaveta K. Oliinychenko, Alexandros Ch. Stratakos, Charalampos Proestos, Constantinos E. Salmas and Aris E. Giannakas
Molecules 2025, 30(23), 4646; https://doi.org/10.3390/molecules30234646 - 3 Dec 2025
Viewed by 381
Abstract
The growing demand for sustainable food packaging has driven the development of active packaging systems using biopolymers like poly(lactic acid) (PLA) and natural antimicrobials. This study focuses on creating novel nanohybrids by loading carvacrol (CV) and trans-cinnamaldehyde (tCN) onto ZnO [...] Read more.
The growing demand for sustainable food packaging has driven the development of active packaging systems using biopolymers like poly(lactic acid) (PLA) and natural antimicrobials. This study focuses on creating novel nanohybrids by loading carvacrol (CV) and trans-cinnamaldehyde (tCN) onto ZnO nanorods for incorporation into PLA/triethyl citrate (TEC) films. The CV@ZnO and tCN@ZnO nanohybrids were synthesized and characterized using XRD, FTIR, desorption kinetics, and by assessing their antioxidant and antibacterial properties. These nanohybrids were then integrated into PLA/TEC films via extrusion. The resulting active films were evaluated for their physicochemical, mechanical, barrier, antioxidant, and antibacterial properties. The tCN@ZnO nanohybrid exhibited a stronger interaction with the ZnO surface and a slower release rate compared to CV@ZnO. While this strong interaction limited its direct antioxidant activity, it proved highly beneficial for the final film’s performance. Films containing 10% tCN@ZnO demonstrated the strongest antibacterial efficacy in vitro against Listeria monocytogenes and Escherichia coli and functioned as potent mechanical reinforcement fillers. Crucially, in a practical application, the PLA/TEC/10tCN@ZnO film significantly extended the shelf-life of fresh minced pork during 6 days of refrigerated storage. It effectively suppressed microbial growth (TVC), delayed lipid oxidation (lower TBARS values), and preserved the meat’s colour and nutritional quality (higher heme iron content) compared to control packaging. The developed tCN@ZnO nanohybrid is confirmed to be a highly effective active agent for creating PLA/TEC-based packaging that can enhance the preservation of perishable foods. Full article
(This article belongs to the Special Issue Development of Food Packaging Materials, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop