molecules-logo

Journal Browser

Journal Browser

Functional Hybrid Materials via Sol–Gel Processing: Design and Properties

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1545

Special Issue Editor


E-Mail Website
Guest Editor
Research Institute for Analytical Instrumentation Subsidiary of National Institute of Research and Development for Optoelectronics INOE 2000, 67 Donath, 400293 Cluj-Napoca, Romania
Interests: water chemistry; water pollution with potentially toxic elements; risk assessment; pollution assessment; analytical chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Functional hybrid materials are of great importance for many applications and are widely used in the production of electronic devices and sensors, catalysis, energy storage, and medicine. Combining inorganic (nano)particles with various organic components may result in hybrid materials with enhanced mechanical, optical, electronic, and magnetic properties. However, designing and producing such materials with controlled properties is often challenging. Sol–gel processing is a versatile approach to producing high-purity nanomaterials with tailored structures and properties at low costs. Recently, the sol–gel route has been proven to be suitable for the encapsulation of various proteins, antibodies, enzymes, and bacteria, leading to new hybrid materials with broad applicability in biomedicine. However, the structure and properties of the produced materials are highly dependent on the processing parameters and post-synthesis processing, such as thermal treatment or coatings. For this Special Issue, we intend to gather original research and review articles on the production of functional hybrid materials via sol–gel processing and their characterization and applications.

Dr. Erika Andrea Levei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sol–gel synthesis
  • hybrid materials
  • biomedicine
  • encapsulation of biomolecules
  • catalysis
  • magnetic behavior
  • structural properties
  • thermal behavior

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 4029 KB  
Article
Sol–Gel Synthesized Silica/Sodium Alginate Hybrids: Comprehensive Physico-Chemical and Biological Characterization
by Antonio D’Angelo, Cecilia Mortalò, Lara Comune, Giuseppina Raffaini, Marika Fiorentino and Michelina Catauro
Molecules 2025, 30(17), 3481; https://doi.org/10.3390/molecules30173481 - 25 Aug 2025
Viewed by 740
Abstract
The development of biomaterials with tailored properties is indispensable for biomedical applications. In this study, amorphous silica/sodium alginate (SiO2/SA) hybrids were synthesized via the sol–gel method by incorporating 2, 5, and 8% sodium alginate into the silica matrix. The hybrids were [...] Read more.
The development of biomaterials with tailored properties is indispensable for biomedical applications. In this study, amorphous silica/sodium alginate (SiO2/SA) hybrids were synthesized via the sol–gel method by incorporating 2, 5, and 8% sodium alginate into the silica matrix. The hybrids were characterized to evaluate their structural, surface, thermal, moisture-responsive, and biological properties. FTIR and XRD analyses confirmed the formation of organic–inorganic networks and amorphous structures. BET measurements revealed a specific surface area of 325 m2/g for SiO2/SA2%, decreasing with higher SA content to 104.3 m2/g for SiO2/SA8%; the moisture sorption capacity followed a similar trend. Thermal analysis indicated improved stabilization of the polymer within the silica matrix. Cytotoxicity tests on HaCaT (human keratinocyte) cells line revealed moderate toxicity for the SiO2/SA2% hybrid (~40% cell viability inhibition (CVI)), while increasing the SA content reduced cytotoxicity, with a CVI of 33% for SiO2/SA5% and ~15% for SiO2/SA8%, all within non-toxic ranges according to ISO standards. The SiO2/SA5% hybrid demonstrated the best balance between functional properties and biocompatibility. These preliminary results suggest that further optimization with intermediate SA concentrations (e.g., 6–7%) could further reduce cytotoxicity while maintaining desirable properties, supporting the potential of silica/sodium alginate hybrids in future biomedical applications. Full article
Show Figures

Graphical abstract

Back to TopTop