molecules-logo

Journal Browser

Journal Browser

Crystal Structures of Tricky, Unexpected, Labile or Difficult Molecular Structures by Diffraction Methods

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Molecular Structure".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 2012

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy
Interests: X-ray diffraction; crystallography; materials science; chemistry; molecular complexes; intermolecular interactions; solid-state chemistry

Special Issue Information

Dear Colleagues,

As crystallographers, we are aware that serendipity sometimes plays a major role in the preparation of new molecular compounds. On the one hand, while many new structures are obtained via crystal engineering and/or accurate experimental design, and theoretical predictions are translated in the production of real crystals, chemistry does not stop surprising us with unexpected molecular structures obtained as byproducts, the degradation of synthesis ingredients, undesired reactions, and inert solvents. On the other hand, many simple molecules used as reactants, synthons and building blocks still have unknown molecular structures because of the difficulty in obtaining suitable single crystals and/or the lack of attempts in producing their crystallizations. All these structures represent a gap in molecular structural knowledge whereby new avenues for new molecular compounds in the form of single molecules, organometallic assemblies and molecular complexes can be explored. Authors are encouraged to demonstrate how these structures are obtained via unconventional routes and/or multi-technique methods and how they can shed new light on molecular material preparation.

Prof. Dr. Marco Milanesio
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular structures
  • single-crystal diffraction
  • powder diffraction
  • unexpected reactions
  • labile compounds
  • intermediates
  • crystallography
  • molecular complexes
  • multi-technique approaches

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3146 KB  
Article
Polymorph Selection and Derivatization in Enantiomerically Pure Medicarpin: Crystallographic and Computational Insights
by Santiago José Guevara-Martínez, Rafael Herrera-Bucio, Marco Antonio Pérez-Cisneros, Gilberto Velázquez-Juárez, Fredy Geovannini Morales-Palacios and Stephanie García-Zavala
Molecules 2025, 30(17), 3652; https://doi.org/10.3390/molecules30173652 - 8 Sep 2025
Viewed by 796
Abstract
Polymorphism critically influences the solid-state properties of organic molecules, affecting stability, solubility, and functionality. We investigated the polymorphic behavior of enantiomerically pure (+)-(6aS,11aS)-medicarpin through combined experimental and computational analyses. Single-crystal X-ray diffraction revealed two distinct chiral polymorphs: the previously reported monoclinic P21 [...] Read more.
Polymorphism critically influences the solid-state properties of organic molecules, affecting stability, solubility, and functionality. We investigated the polymorphic behavior of enantiomerically pure (+)-(6aS,11aS)-medicarpin through combined experimental and computational analyses. Single-crystal X-ray diffraction revealed two distinct chiral polymorphs: the previously reported monoclinic P21 form and a newly identified orthorhombic P212121 form with a fully chiral packing arrangement. The discovery of this previously unreported polymorph underscores the subtle yet decisive effects of solvent and conformational flexibility in directing crystallization. Detailed structural analysis reveals that, whereas the P21 form is only stabilized by a single dominant electrostatic interaction, the P212121 form features a more complex network comprising C-H···π contacts, bifurcated C-H···O hydrogen bonds, and aromatic edge-to-face interactions. Further investigation of a functionalized p-nitrobenzoate derivative corroborates the critical influence of molecular substituents and crystallization conditions on packing motifs. Lattice energy DFT calculations confirm that each polymorph is stabilized by distinct electrostatic and dispersive interaction patterns, illustrating the complex energetic landscape of polymorph selection. Altogether, this work provides a framework for understanding and anticipating which polymorph is likely to form under specific solvent and crystallization conditions, offering insights for future strategies in materials design and guiding the pursuit of patentable crystalline forms in pharmaceutical applications. Full article
Show Figures

Figure 1

15 pages, 4657 KB  
Article
Conformational and Intermolecular Interaction Analysis of Tiaprofenic Acid: A X-Ray Powder Diffraction and First Principle Modeling Analysis
by Mattia Lopresti, Luca Palin and Marco Milanesio
Molecules 2025, 30(17), 3593; https://doi.org/10.3390/molecules30173593 - 2 Sep 2025
Viewed by 864
Abstract
(±)-tiaprofenic acid (TA), marketed as (Surgam®), belongs to the family of NSAIDs, with the peculiarity of a reduced incidence of ulcer induction in rats compared with parent drugs. However, some adverse effects were observed, and better knowledge of its interaction with [...] Read more.
(±)-tiaprofenic acid (TA), marketed as (Surgam®), belongs to the family of NSAIDs, with the peculiarity of a reduced incidence of ulcer induction in rats compared with parent drugs. However, some adverse effects were observed, and better knowledge of its interaction with biologic substrates is needed. Unfortunately, unlike most commercial NSAIDs, suitable single crystals for an X-ray diffraction study could not be obtained. To fill the gap, the crystal structure of TA was solved by X-ray powder diffraction, and the molecular interactions stabilizing the structure were analyzed by Hirshfeld surface and energy framework analysis. TA crystallizes in the P21/c space group, with its two enantiomers in the asymmetric unit, further confirming the peculiarity of the crystal structure and the difficulty of solving it. TA packing is characterized by alternating enantiomers connected through hydrogen bonds, forming chains, arranged in layers, stabilized by π-stacking. First principle modeling revealed several stable conformations within 4kJ mol1 of the global minimum and the relaxed potential energy scans revealed modest (8kJ mol1 to 15kJ mol1) energy barriers. Such flat energy landscape suggests flexible and dynamic behavior of tiaprofenic acid in solution and in vivo conditions, with multiple suitable docking sites. Full article
Show Figures

Graphical abstract

Back to TopTop