molecules-logo

Journal Browser

Journal Browser

Recent Advances on Biomass Conversion and CO2 Valorization: Steeping Towards a Circular Economy, 2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 116

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Catalysis and Petrochemistry, CSIC, c/Marie Curie No. 2, Cantoblanco, 28049 Madrid, Spain
Interests: heterogeneous catalysis; CO2; biomass
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Inorganic and Technical Chemistry, Faculty of Sciences, UNED, 28232 Madrid, Spain
Interests: carbon; graphite; nanoparticles; carbon nanotubes; material characterization; catalysis; renewable materials

Special Issue Information

Dear Colleagues,

The need to decrease current CO2 emissions due to human activity is clear, as it has critical consequences for the environment. This has prompted research on alternatives to fossil fuel use as well as technologies to capture CO2 and its utilization. There are several strategies that have been studied, such as increasing the efficiency of the current process, using carbon-neutral sources, or capturing the CO2 produced to either store or use it.

Considering this, the aim of this Special Issue is to cover the recent state-of-the-art technology on CO2 and biomass conversion.

With this Special Issue, we welcome original contributions in the fields of biomass and CO2 conversion. The coverage of this Special Issue includes but is not limited to, the following:

  • The catalytic conversion of CO2;
  • Biomass conversion.

Dr. Ana Belén Dongil
Dr. Eva Castillejos-Lopéz
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • CO2 valorization
  • biomass conversion
  • catalysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5222 KB  
Article
Liquid Phase Catalytic Transfer Hydrogenation of Crotonaldehyde over ReOx-Supported Catalysts Using Formic Acid as In Situ Hydrogen Donor
by Carlos Esteban Aristizábal-Alzate, Verónica Naharro-Ovejero, Manuel Romero-Sáez and Ana Belén Dongil
Molecules 2025, 30(21), 4307; https://doi.org/10.3390/molecules30214307 - 5 Nov 2025
Abstract
The selective hydrogenation of the C=O bond over the C=C bond in α,β-unsaturated aldehydes remains a well-known challenge. This work investigates the liquid-phase catalytic transfer hydrogenation of crotonaldehyde to crotyl alcohol over ReOx-based catalysts, using formic acid (FA) as an in situ hydrogen [...] Read more.
The selective hydrogenation of the C=O bond over the C=C bond in α,β-unsaturated aldehydes remains a well-known challenge. This work investigates the liquid-phase catalytic transfer hydrogenation of crotonaldehyde to crotyl alcohol over ReOx-based catalysts, using formic acid (FA) as an in situ hydrogen donor. A series of 10 wt% Re catalysts supported on G200, g-C3N4, TiO2, and ZrO2 were synthesized and tested in a batch reactor at 20 bar and temperatures of 140–180 °C. Catalysts were characterized by XRD, BET, NH3-TPD, and XPS to correlate their physicochemical properties with catalytic behavior. Among the studied materials, ReOx/ZrO2 and ReOx/g-C3N4 exhibited the highest crotyl alcohol selectivity above 57% for all reaction temperatures, evaluated at crotonaldehyde conversion of 25%. The nature of the support strongly influenced the dispersion and oxidation state of Re species, as well as the surface acidity, which governed the activation of both the carbonyl group and the FA decomposition. Compared with molecular hydrogen, FA improved both conversion and selectivity due to its superior hydrogen-donating ability in the aqueous phase. These findings demonstrate that tailoring the acid–base characteristics of ReOx catalysts and employing biomass-derived hydrogen donors represent an effective strategy for selective hydrogenation of α,β-unsaturated aldehydes. Full article
Show Figures

Figure 1

Back to TopTop