Understanding Hydrothermal Ore Deposits

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (31 July 2024) | Viewed by 4420

Special Issue Editor


E-Mail Website
Guest Editor
School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
Interests: artificial intelligence in geoscience; micro-image machine learning; genesis of critical metal deposits
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Ore deposits continuously provide a mass of valuable resources for human society. With the development of analytical instruments, high-precision in situ analysis has been a critical means of understanding hydrothermal ore deposits. This provides us a unique window for investigating various aspects of ore deposits, ranging from the tectonic background, source and evolution of ore fluids, to mineralization factors (e.g., P-T-X conditions, the redox environment, and the water content). This Special Issue is focused on relevant topics, including but not limited to (1) exploration and deposit geochemistry; (2) the mineral chemistry of ores, gangue minerals, and accessory minerals that hold significant clues about metal deposition; (3) the geochronology of ore deposits; and (4) the application and development of in situ analyses in ore-deposit-related studies.

Prof. Dr. Kunfeng Qiu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ore deposits
  • in situ analysis
  • geochemistry
  • geochronology
  • fluid evolution
  • ore-forming process
  • metal transport and deposition

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 13285 KiB  
Article
Granites of the Chazangcuo Copper–Lead–Zinc Mining Area in Tibet, China: Magma Source and Tectonic Implications
by Yan Li, Jianguo Wang, Shengyun Wei, Jian Hu, Zhinan Wang and Jiawen Ge
Minerals 2024, 14(12), 1227; https://doi.org/10.3390/min14121227 - 2 Dec 2024
Viewed by 857
Abstract
Intermediate-acidic granites occur extensively in the Chazangcuo copper-lead-zinc mining area (hereinafter referred to as the Chazangcuo mining area) in Tibet, China. Exploring their rock types, sources, and tectonic settings is essential for understanding the genesis of granites in the region. This study investigated [...] Read more.
Intermediate-acidic granites occur extensively in the Chazangcuo copper-lead-zinc mining area (hereinafter referred to as the Chazangcuo mining area) in Tibet, China. Exploring their rock types, sources, and tectonic settings is essential for understanding the genesis of granites in the region. This study investigated the petrology of the Chazangcuo granites, as well as the geochemical characteristics of their major elements, trace elements, and rare earth elements (REEs). Results indicate that the Chazangcuo granites are high-K calc-alkaline metaluminous rocks. These granites are enriched in large-ion lithophile elements (LILEs; e.g., Rb and Ba), depleted in high-field-strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), with a relative enrichment in light rare earth elements (LREEs), and relatively depleted in heavy rare earth elements (HREEs), exhibiting a V-shaped distribution pattern and weak negative Eu anomalies. The granites are classified as typical I-type granites, displaying characteristics of crust-derived magmas with contributions from mantle sources and exhibiting significant fractional crystallization. The Chazangcuo granites were derived from the partial melting of mafic rocks, with protoliths formed in a moderate temperature environment. Influenced by the subduction of the Neotethys Ocean, the Chazangcuo granites were formed in an arc caused by the collision between the Indian and Eurasian plates (also referred to as the Indo–Eurasian collision) during the Late Triassic. Under the effect of geological activities such as upwelling of the asthenosphere and fluid intrusion and differentiation, metal mineralization was prompted to be distributed in the granite fissures, forming the Cu-Pb-Zn polymetallic deposits of Chazangcou in Tibet, suggesting that the granites are closely associated with mineralization. Full article
(This article belongs to the Special Issue Understanding Hydrothermal Ore Deposits)
Show Figures

Figure 1

37 pages, 33345 KiB  
Article
LA-ICP-MS Analyses of Sulfides from Gold-Bearing Zones at the Perron Deposit, Abitibi Belt, Canada: Implications for Gold Remobilization through Metamorphism from Volcanogenic Mineralizations to Orogenic Quartz–Carbonate Veins
by Damien Gaboury, Dominique Genna, Jérôme Augustin, Maxime Bouchard and Jacques Trottier
Minerals 2024, 14(8), 843; https://doi.org/10.3390/min14080843 - 21 Aug 2024
Viewed by 1385
Abstract
The Perron deposit, located in the northern part of the Archean Abitibi belt, bears some of the highest gold-grade mineralization for orogenic-vein-type deposits worldwide (High-Grade Zone: HGZ). More than 13 gold-bearing zones with different sulfide assemblages, hydrothermal alterations, and gold grades have been [...] Read more.
The Perron deposit, located in the northern part of the Archean Abitibi belt, bears some of the highest gold-grade mineralization for orogenic-vein-type deposits worldwide (High-Grade Zone: HGZ). More than 13 gold-bearing zones with different sulfide assemblages, hydrothermal alterations, and gold grades have been recently outlined, and they range from volcanogenic to orogenic in origin. In addition, seven zones are hosted in a restricted volume of ~1 km3, which is called the Eastern Gold Zone. Pyrite, sphalerite, pyrrhotite, and chalcopyrite—each from a different gold-bearing zone—were analyzed with LA-ICP-MS to decipher their genetic links, mineralizing processes, and temperature of formation. The temperatures calculated with the sphalerite GGIMFis thermometer range from 348 to 398 °C. All gold-bearing zones recorded volcanogenic hydrothermal inputs at different intensities, manifested by pyrrhotite. Pyrite was late-metamorphic and related to the orogenic gold system induced by the contact metamorphism of amphibolite facies. The pyrrhotite grains had very homogeneous trace element signatures in all zones, which is a characteristic of metamorphic recrystallization, exhibiting a loss of mobile elements (Au, Te, Bi, Tl, Sn, W, In) but high concentrations of Ni, Co, and As. Conversely, the pyrite was systematically enriched with all elements depleted from pyrrhotite, bearing five specific signatures of element enrichments: W, Tl, Sn, In-Cd-Zn, and Bi-Te-Au. For gold-rich zones (e.g., the HGZ), gold was linked to the Bi-Te-Au signature of pyrite, with Bi enrichment occurring at up to 72,000 times the background level in Archean shale pyrite. It was concluded that gold was transported, at least in part, as Bi-Te melts in the previously documented non-aqueous orogenic fluids, hence accounting for the very-high-grade gold content of the HGZ. Genetically, the metamorphism of primary gold-bearing volcanogenic mineralizations was the main source of gold during the overprinting of amphibolite (600 °C) in a metamorphically induced orogenic mineralizing event. A strong volcanogenic pre-enrichment is considered the main factor accounting for the gold endowment of the Eastern Gold Zone. Full article
(This article belongs to the Special Issue Understanding Hydrothermal Ore Deposits)
Show Figures

Figure 1

18 pages, 6106 KiB  
Article
Genesis and Formation of the Tuwaishan Gold Deposit in Hainan Island, South China: Implications from H-O-S Isotopes
by Yuheng Liu, Jingwen Mao, Jun Hu, Lei Wang and Deming Xu
Minerals 2023, 13(8), 1082; https://doi.org/10.3390/min13081082 - 14 Aug 2023
Cited by 1 | Viewed by 1385
Abstract
The Tuwaishan gold deposit is located at the northeastern end of the Gezhen shear zone in the western part of Hainan Island, South China. It is one of a series of similar gold deposits hosted in the Mesoproterozoic basement rocks and structurally controlled [...] Read more.
The Tuwaishan gold deposit is located at the northeastern end of the Gezhen shear zone in the western part of Hainan Island, South China. It is one of a series of similar gold deposits hosted in the Mesoproterozoic basement rocks and structurally controlled by the Gezhen shear zone. The hydrothermal ore-forming period can be divided into quartz-pyrite-arsenopyrite stage, quartz-pyrite-base metal sulfides stage and quartz-carbonate stage. Eleven gold-bearing quartz vein samples yield δDV-SMOW and δ18OV-SMOW values of −75.9‰ to −54.4‰ and +8.1‰ to +13.7‰, respectively, and the corresponding δ18Owater values range from +3.1‰ to +8.7‰. In addition, the pyrite separates from 14 ore samples yield δ34S values of +4.5‰ to +7.9‰. The H-O-S isotopic data, along with fluid properties of the Tuwaishan and other gold deposits along the Gezhen shear zone, suggest that the ore-forming fluid and materials are of metamorphic rather than magmatic origin. Hence, we propose that the Tuwaishan gold deposit is best classified as orogenic gold deposit that resulted from regional metamorphism. Considering that the Mesoproterozoic basement rocks have experienced amphibolite facies metamorphism prior to the gold mineralization, the metamorphic devolatilization of the Ordovician-Silurian rocks at depth would provide a realistic source of fluid, gold and sulfur for the Tuwaishan and other gold deposits of the Gezhen gold belt. Full article
(This article belongs to the Special Issue Understanding Hydrothermal Ore Deposits)
Show Figures

Figure 1

Back to TopTop