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Abstract: The Tuwaishan gold deposit is located at the northeastern end of the Gezhen shear zone in
the western part of Hainan Island, South China. It is one of a series of similar gold deposits hosted
in the Mesoproterozoic basement rocks and structurally controlled by the Gezhen shear zone. The
hydrothermal ore-forming period can be divided into quartz-pyrite-arsenopyrite stage, quartz-pyrite-
base metal sulfides stage and quartz-carbonate stage. Eleven gold-bearing quartz vein samples yield
δDV-SMOW and δ18OV-SMOW values of −75.9‰ to −54.4‰ and +8.1‰ to +13.7‰, respectively, and
the corresponding δ18Owater values range from +3.1‰ to +8.7‰. In addition, the pyrite separates
from 14 ore samples yield δ34S values of +4.5‰ to +7.9‰. The H-O-S isotopic data, along with fluid
properties of the Tuwaishan and other gold deposits along the Gezhen shear zone, suggest that
the ore-forming fluid and materials are of metamorphic rather than magmatic origin. Hence, we
propose that the Tuwaishan gold deposit is best classified as orogenic gold deposit that resulted from
regional metamorphism. Considering that the Mesoproterozoic basement rocks have experienced
amphibolite facies metamorphism prior to the gold mineralization, the metamorphic devolatilization
of the Ordovician-Silurian rocks at depth would provide a realistic source of fluid, gold and sulfur
for the Tuwaishan and other gold deposits of the Gezhen gold belt.

Keywords: genesis; formation; Tuwaishan gold deposit; Hainan Island; H-O-S isotopes

1. Introduction

Hainan Island is located in the southern margin of the South China Block, and is
adjacent to the northern part of the Indochina Block [1,2] (Figure 1a). More than 50 gold
deposits and occurrences have been discovered on this island, making Hainan Island a
prospective region for gold exploration in South China [3–7]. The Gezhen gold belt, which
consists of a series of similar gold deposits along the NE-trending Gezhen shear zone in the
western Hainan Island, has become the most prospective gold exploration target within the
island [4,5,8].
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Figure 1. (a) Structural outline of Southeast Asia. (b) Simplified geological map of Hainan Island. 
(Revised from [9]). 

Studies on ore deposit geology, ore-forming fluid characteristics and isotope compo-
sitions have been conducted to constrain the source and to further identify the genesis of 
the Gezhen gold deposits, but debates persist on whether those deposits are sedimentary-
reworked, magmatic-hydrothermal or orogenic in genesis [5,8,10–13]. The metamorphic 
rocks in the Mesoproterozoic Baoban Group have long been accepted as the source of Au 
for the Gezhen gold belt because (1) they are the host rocks of those gold deposits and (2) 
they possess a relatively high content of Au [5,11,12,14–17]. However, the rocks in the Ba-
oban Group were deposited at 1460–1430 Ma and have experienced amphibolite facies 
metamorphism at 1.3–1.0 Ga, whereas the Gezhen gold deposits were formed at ~243 Ma 
[8,18–22]. On account of the metamorphic devolatilization model, Au and sulfur would be 
released into the fluid phase during the prograde metamorphic transition of greenschist 
to amphibolite facies [23–28]. Therefore, if the Gezhen gold deposits are orogenic in gen-
esis, then reevaluation is required for whether the regional metamorphism of the Baoban 
Group rocks led to the formation of the Tuwaishan and other gold deposits along the Ge-
zhen shear zone. 

In this study, we present new H-O-S isotopic compositions of ore samples from the 
Tuwaishan gold deposit and summarize the previously published H-O-S isotopic data for 
the Gezhen gold deposits to identify the source characteristics of ore-forming fluid and 
materials of the Tuwaishan and other gold deposits along the Gezhen shear zone. In ad-
dition, we carried out integrated analyses of source characteristics, deposit geology, re-
gional geology of the Gezhen gold belt, as well as tectonic settings of Hainan Island to 
further identify the potential source for gold mineralization along the Gezhen shear zone. 

2. Regional Geology 
Hainan Island is separated from the mainland of South China by the Qiongzhou 

Strait in the north and is regarded as the southernmost extension of the Cathaysia Block 
[1,2,24] (Figure 1a). It is tectonically located at the junction of the Eurasian plate, the In-
dian–Australian plate and the Pacific plate [29–33]. 

Figure 1. (a) Structural outline of Southeast Asia. (b) Simplified geological map of Hainan Island.
(Revised from [9]).

Studies on ore deposit geology, ore-forming fluid characteristics and isotope composi-
tions have been conducted to constrain the source and to further identify the genesis of
the Gezhen gold deposits, but debates persist on whether those deposits are sedimentary-
reworked, magmatic-hydrothermal or orogenic in genesis [5,8,10–13]. The metamorphic
rocks in the Mesoproterozoic Baoban Group have long been accepted as the source of Au
for the Gezhen gold belt because (1) they are the host rocks of those gold deposits and
(2) they possess a relatively high content of Au [5,11,12,14–17]. However, the rocks in
the Baoban Group were deposited at 1460–1430 Ma and have experienced amphibolite
facies metamorphism at 1.3–1.0 Ga, whereas the Gezhen gold deposits were formed at
~243 Ma [8,18–22]. On account of the metamorphic devolatilization model, Au and sul-
fur would be released into the fluid phase during the prograde metamorphic transition
of greenschist to amphibolite facies [23–28]. Therefore, if the Gezhen gold deposits are
orogenic in genesis, then reevaluation is required for whether the regional metamorphism
of the Baoban Group rocks led to the formation of the Tuwaishan and other gold deposits
along the Gezhen shear zone.

In this study, we present new H-O-S isotopic compositions of ore samples from the
Tuwaishan gold deposit and summarize the previously published H-O-S isotopic data
for the Gezhen gold deposits to identify the source characteristics of ore-forming fluid
and materials of the Tuwaishan and other gold deposits along the Gezhen shear zone.
In addition, we carried out integrated analyses of source characteristics, deposit geology,
regional geology of the Gezhen gold belt, as well as tectonic settings of Hainan Island to
further identify the potential source for gold mineralization along the Gezhen shear zone.
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2. Regional Geology

Hainan Island is separated from the mainland of South China by the Qiongzhou Strait
in the north and is regarded as the southernmost extension of the Cathaysia Block [1,2,24]
(Figure 1a). It is tectonically located at the junction of the Eurasian plate, the Indian–
Australian plate and the Pacific plate [29–33].

The Gezhen shear zone lies between the Changjiang–Qionghai and Jianfeng–Diaoluo
E-W trending faults in the western part of the Hainan Island [9] (Figure 1b). It extends
for more than 55 km with a width of 0.5–3 km [34–36]. The Gezhen shear zone trends
35–40◦, dips to the northwest with dip angles gradually varying from 60–80◦ on the
surface to 15–30◦ with increasing depth and is characterized by both sinistral and reverse
movement [9,36,37] (Figure 2). It is a multi-phase superimposed brittle-ductile shear zone
and is disrupted by later NW- and E–W-trending faults [5,38] (Figure 2). The youngest shear
deformation age was 227.4 ± 0.2 Ma from 40Ar/39Ar dating of synkinematic muscovite
along the shear zone [9].
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The hanging wall rocks of the Gezhen shear zone include the Mesoproterozoic Baoban
Group and contemporaneous granitic and mafic rocks while the footwall rocks comprise
the Ordovician Nanbigou Formation and the lower Silurian Tuolie Formation [20,21,39,40]
(Figure 2). The Baoban Group comprising the lower Gezhencun Formation and upper
Ewenling Formation was deposited at 1460–1430 Ma and suffered amphibolite facies
metamorphism at 1.3–0.9 Ga [18–22]. It represents the oldest crystalline basement of the
Hainan Island [37,41]. The Gezhencun Formation rocks consist of gneiss and migmatitic
gneiss and have experienced migmatization and upper amphibolite facies metamorphism,
while the Ewenling Formation rocks consist of quartz-mica schist, mica-quartz schist,
quartzite and thin graphite layers and have experienced lower amphibolite facies metamor-
phism [8,19,22,37,41]. The protoliths of the Gezhencun Formation rocks are inferred to be
intermediate-felsic volcanic and volcaniclastic rocks based on their whole rock geological
composition while the rhythmic layering as well as relict clastic texture suggest that the
protoliths of the Ewenling Formation rocks were mainly siliciclastic rocks [19,22,37,41]. The
Nanbigou Formation rocks are mainly composed of quartz-mica schist, quartz-sericite phyl-
lite and metamorphic siltstone, interspersed with metamorphic basic volcanic rocks. The
overall metamorphism of the Nanbigou Formation is greenschist facies while some areas
have reached upper greenschist facies metamorphism [4,42]. The low-grade metamorphic
successions in the Tuolie Formation consist of phyllite, slate and metamorphic sandstone,
with limestone and tuff, and the overall metamorphism is lower greenschist facies [4,42].

Magmatic rocks outcropped along the Gezhen shear zone include the Mesoproterozoic
granitic and mafic rocks, as well as Middle Permian Changjiang and Datian plutons [20,21,43].
The Mesoproterozoic granitoids intruded the Baoban Group at 1450–1430 Ma, and were
generally subjected to metamorphism and deformation, resulting in the formation of
granitic gneiss and granitic mylonite [18,21,39,40]. The Mesoproterozoic mafic rocks were
formed at 1440–1420 Ma and were metamorphosed to plagioclase amphibolite, metabasic
gabbro and metabasic diabase, which are mainly lenticular, dyke and stratified in the
Baoban Group [20,44]. The Datian pluton intruded the Baoban Group, Nanbitou Formation
and Tuolie Formation at 263 ± 1.2 Ma [43]. It is composed of biotite monzogranite and
shows gneissic schistosity within the Gezhen shear zone [43]. The Changjiang pluton
consists of biotite monzogranite with a formation age of 262 ± 2.2 Ma [43].

Along the Gezhen shear zone, from NE to SW, the Tuwaishan, Baoban, Erjia and Bumo
gold deposits as well as other gold deposits and occurrences have been discovered, making
up the Gezhen gold belt [5,8,45–47]. Confirmed a total measured metal Au reserve of ~275 t,
the Gezhen gold belt has become the most economically significant gold belt in the Hainan
Island [4,5,8].

3. Deposit Geology

The Tuwaishan gold deposit is located at the northeastern end of the Gezhen shear
zone, approximately 15 km southwest of the Changjiang City (Figure 2). This gold deposit
was discovered during the gold rush in the Hainan Island during 1988–1991 and has been
mined underground since 1997 [48]. The combined proven gold reserves and historical
gold production are about 22 t at 3.5 g/t [48].

Rocks in the deposit area include quartz-mica schist of the Ewenling Formation and
mylonitized Mesoproterozoic granitoids on the hanging wall, as well as schist and phyllite
of the Ordovician-Silurian metamorphic successions on the footwall of the Gezhen shear
zone (Figures 2 and 3). The dominant structure in the deposit area is the Gezhen shear
zone. It is approximately 1.5 km in width, trends 35–40◦, dips to the northwest with dip
angles ranging from 60◦ to 80◦ in the mining area (Figure 3). Plagioclase amphibolites are
locally observed as dykes or lenses in the Baoban Group rocks, and the dioritic porphyrites
have also been found as dykes in the Mesoproterozoic metamorphic and magmatic rocks in
the mining shafts [5,8,10,11]. More than 60 orebodies have been discovered in the granitic
mylonites and are divided into 4 ore zones [48]. The orebodies are 150–300 m long, 5–25 m
wide, strike 35–40◦ and dip NW from 75◦ on the surface to 55◦ with increasing depth [48].
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All lenticular orebodies and gold-bearing veins are controlled by the Gezhen shear zone
and its secondary fractures [5,8,47].

Two types of gold mineralization have been identified in the Tuwaishan gold deposit—
disseminated ores hosted in the granitic mylonite and less common auriferous sulfide-
bearing quartz veins (e.g., the smoky quartz veins; Figure 4). The granitic mylonites
are the main wallrocks in the gold deposit while the mineralized quartz-mica schists
and plagioclase amphibolites have also been observed. Silicification, sulfidization and
sericitization have close relationships with gold mineralization while chloritization and
carbonatization are also related to orebodies. Ore minerals include pyrite, arsenopyrite
with lesser pyrrhotite, galena, sphalerite and chalcopyrite (Figure 5). The occurrence of
gold is predominantly native gold, and electrum grains occur adjacent to or in fractures of
sulfide grains and gangue minerals as free gold (Figure 5). Major gangue minerals include
quartz, albite, sericite, chlorite and calcite (Figures 4 and 5).
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Based on crosscutting relationships and mineral assemblages, the hydrothermal ore-
forming period of the Tuwaishan gold deposit can be divided into three stages. The early
stage gray and milky quartz veins contain pyrite, arsenopyrite, gold and local pyrrhotite
(Figures 4 and 5). The middle stage is characterized by smoky quartz veins crosscut-
ting early stage quartz veins or superimposed on the early stage silicification, contain-
ing base metal sulfides and native gold, and is the main stage for gold mineralization
(Figures 4 and 5). The late stage is represented by quartz–calcite veins commonly crosscut-
ting the earlier two stages of quartz veins with trace sulfides and almost no gold, reflecting
the end of this period of ore-forming hydrothermal activity (Figure 4).
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stage pink calcite vein. Qtz = Quartz, Py = Pyrite, Chl = Chlorite, Cal = Calcite.
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Figure 5. Alteration stages and mineral assemblages of the Tuwaishan gold deposit. (a,b) Euhedral
pyrite and arsenopyrite grains with later hydrothermal alteration and deformation. (c) Gold grains
formed in the fractures or adjacent to pyrite and arsenopyrite grains. (d) Pyrite, sphalerite and galena
assemblage, euhedral pyrite grains altered by later sphalerite and galena. (e). Pyrite, arsenopyrite
and galena assemblage with gold grains. (f). Gold grains formed in quartz grains near pyrrhotite
grains. Py = Pyrite, Apy = Arsenopyrite, Po = Pyrrhotite, Gn = Galena, Sph = Sphalerite, Au = Gold.

4. Sample Description and Analytical Methods

In this study, 11 and 14 ore samples have been collected at different sections from
shaft 2, 3 and 4 of the Tuwaishan gold deposit to carry out H-O and S isotope analyses,
respectively. Descriptions of the samples are presented in Table 1.
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Table 1. Sample location and description of the Tuwaishan gold deposit.

Number Location Lithology Characteristics Analyses

NW-7 Section 5, shaft 2 Quartz vein ore Quartz vein with sulfides S
JC-20 Section 5, shaft 2 Quartz vein ore Quartz vein with sulfides H-O

13JC-11 Section 6, shaft 3 Disseminated ore Granitic mylonites with quartz, pyrite and chlorite H-O-S
13JC-12 Section 6, shaft 3 Disseminated ore Granitic mylonites with quartz, pyrite and chlorite S
13JC-13 Section 6, shaft 3 Disseminated ore Granitic mylonites with sulfides S
13JC-16 Section 5, shaft 2 Disseminated ore Granitic mylonites with sulfides H-O-S
13JC-18 Section 5, shaft 2 Disseminated ore Granitic mylonites with pyrite S
13JC-19 Section 5, shaft 2 Quartz vein ore Quartz vein with sulfides and chlorite along each sides H-O-S
13JC-20 Section 5, shaft 2 Quartz vein ore Quartz vein with sulfides H-O
13JC-21 Section 5, shaft 2 Quartz vein ore Quartz vein with sulfides H-O
13JC-27 Section 5, shaft 3 Quartz vein ore Quartz vein with sulfides S
16JC-16 Section 7, shaft 3 Quartz vein ore Quartz breccia with granitic mylonites H-O-S
16JC-19 Section 7, shaft 3 Quartz vein ore Smoky quartz veins with fine-grained sulfides H-O-S
16JC-25 Section +25 m, shaft 4 Quartz vein ore Smoky quartz veins with fine-grained sulfides S
16JC-26 Section +25 m, shaft 4 Quartz vein ore Smoky quartz veins with fine-grained sulfides H-O-S
16JC-27 Section +25 m, shaft 4 Quartz vein ore Smoky quartz veins with fine-grained sulfides H-O-S
16JC-29 Section +25 m, shaft 4 Quartz vein ore Smoky quartz veins with fine-grained sulfides H-O
16JC-30 Section +25 m, shaft 4 Disseminated ore Granitic mylonites with pyrite and chlorite S

The H and O isotope analyses were completed at the Beijing Research Institute of
Uranium Geology, China (BRIUG). Quartz grains were crushed into 40–60 mesh and further
handpicked under a binocular microscope, followed by fine grinding and sieving before
treatment with dehydrated ethanol to ensure a purity of better than 99% [49,50]. The H
and O isotopic compositions of the purified quartz were measured using a MAT-253 gas
isotope ratio mass spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Hydrogen
isotope was measured on water released from fluid inclusions of the quartz via thermal
decrepitating. The purified quartz samples were first degassed through heating under a
vacuum at 90 ◦C for 12 h. Then, the water was released from fluid inclusions by heating
the samples to 400–500 ◦C [51]. The released water was trapped and reduced to H2 by zinc
powder before analyses with gas isotope ratio mass spectrometer. Oxygen isotope analyses
were based on the BrF5 extraction technique, with O being extracted by reacting with
BrF5 [52]. The resulting O2 was reacted with graphite rods to produce CO2 before analyses
with gas isotope ratio mass spectrometer. The isotopic results were standardized with
Vienna-Standard Mean Ocean Water (V-SMOW) for H and O isotopes, while the analytical
precisions were better than ±2% for δD values and ±0.2% for δ18O values. The isotopic
fractionation of oxygen between quartz and water was calculated using the equation of
1000lnα = 3.38 × 106/T2 − 3.4 [52].

5. Results

The H and O isotopic compositions of gold ores from the Tuwaishan gold deposit,
alone with those of the Baoban, Bumo, Erjia gold deposits as well as the wallrock granitic
mylonites from previous studies are presented in Table 2 and plotted in Figure 6. The
11 ore samples of the Tuwaishan gold deposit yield δDV-SMOW and δ18OV-SMOW values from
−75.9‰ to −54.4‰ and from +8.1‰ to 13.7‰, respectively. Given 360 ◦C as the trapping
temperature for the main stage of gold mineralization of the Tuwaishan gold deposit [47],
the corresponding δ18Owater values range from +3.1‰ to +8.7‰.
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Table 2. Hydrogen and oxygen isotopic data of quartz veins from the Gezhen gold deposits.

Gold
Deposit

Sample
Number Lithology Mineral δ18OSMOW

(‰)
δ18OH2O

(‰)
δDSMOW

(‰)

Equilibrium
Temperature

(◦C)
Data Source

Tuwaishan 16JC-16 Gold ore Quartz 8.5 3.5 −63.6 360 This study
Tuwaishan 16JC-19 Gold ore Quartz 12.6 7.6 −75.9 360 This study
Tuwaishan 16JC-26 Gold ore Quartz 13.7 8.7 −64.2 360 This study
Tuwaishan 16JC-27 Gold ore Quartz 12.9 7.9 −65.9 360 This study
Tuwaishan 16JC-29 Gold ore Quartz 10.8 5.8 −64.0 360 This study
Tuwaishan 13JC-11 Gold ore Quartz 8.4 3.4 −75.9 360 This study
Tuwaishan 13JC-16 Gold ore Quartz 8.1 3.1 −65.8 360 This study
Tuwaishan JC-20 Gold ore Quartz 12.4 7.4 −62.6 360 This study
Tuwaishan 13JC-19 Gold ore Quartz 9.7 4.7 −58.2 360 This study
Tuwaishan 13JC-20 Gold ore Quartz 9.7 4.7 −54.4 360 This study
Tuwaishan 13JC-21 Gold ore Quartz 12.3 7.3 −56.2 360 This study
Tuwaishan 2-4-B1 Gold ore Quartz 13.0 3.7 −74.0 252 Yang, 2008 [13]
Tuwaishan 2-4-B2 Gold ore Quartz 14.8 6.0 −80.0 253 Yang, 2008 [13]
Tuwaishan 2-4-B3 Gold ore Quartz 15.0 7.6 −85.0 287 Yang, 2008 [13]
Tuwaishan 2-4-A3 Gold ore Quartz 15.3 4.7 −87.0 238 Yang, 2008 [13]
Tuwaishan 3-A1 Gold ore Quartz 14.3 3.2 −81.0 211 Yang, 2008 [13]
Tuwaishan 3-A3 Gold ore Quartz 14.4 2.4 −74.0 195 Yang, 2008 [13]
Tuwaishan 3-A5 Gold ore Quartz 15.0 3.6 −73.0 224 Yang, 2008 [13]
Tuwaishan 3-A4 Gold ore Quartz 14.9 3.8 −76.0 209 Yang, 2008 [13]
Tuwaishan 2-4-C1 Gold ore Quartz 12.1 1.3 −75.0 214 Yang, 2008 [13]
Tuwaishan 2-4-C2 Gold ore Quartz 12.5 1.3 −68.0 208 Yang, 2008 [13]
Tuwaishan TIV-2 Gold ore Quartz 12.1 3.1 −67.8 252 Hou et al., 1996 [16]
Tuwaishan TIV-3 Gold ore Quartz 9.6 0.6 −61.7 252 Hou et al., 1996 [16]
Tuwaishan T-02 Gold ore Quartz 14.2 8.1 −68.0 323 Xiao, 1989 [55]
Tuwaishan T-179 Gold ore Quartz 10.9 4.7 −85.0 320 Xiao, 1989 [55]
Tuwaishan T-09 Gold ore Quartz 11.5 4.4 −61.9 293 Xiao, 1989 [55]
Tuwaishan T-05 Gold ore Quartz 13.1 2.1 −61.9 212 Xiao, 1989 [55]
Tuwaishan T-021 Gold ore Quartz 15.1 3.1 −66.8 196 Xiao, 1989 [55]



Minerals 2023, 13, 1082 10 of 18

Table 2. Cont.

Gold
Deposit

Sample
Number Lithology Mineral δ18OSMOW

(‰)
δ18OH2O

(‰)
δDSMOW

(‰)

Equilibrium
Temperature

(◦C)
Data Source

Tuwaishan T-35 Gold ore Quartz 12.8 1.2 −73.0 200 Xiao, 1989 [55]
Tuwaishan T-56 Gold ore Quartz 10.2 −0.1 −87.0 220 Xiao, 1989 [55]
Tuwaishan V2-3 Gold ore Quartz 13.7 −0.1 −73.0 171 Feng, 1989 [56]
Tuwaishan V5-161 Gold ore Quartz 10.7 2.1 −55.0 259 Feng, 1989 [56]
Tuwaishan V102-05 Gold ore Quartz 13.1 2.1 −62.0 212 Feng, 1989 [56]

Baoban PV1-1 Gold ore Quartz 10.0 2.7 −61.0 290 Chen et al., 1993 [11]
Baoban PV1-2 Gold ore Quartz 9.8 2.5 −54.0 290 Chen et al., 1993 [11]
Baoban B249 Gold ore Quartz 7.5 −3.5 −76.0 210 Xiao, 1989 [55]
Baoban B279 Gold ore Quartz 10.3 −2.7 −59.0 180 Xiao, 1989 [55]
Baoban V1-9-3 Gold ore Quartz 10.2 1.9 −66.0 265 Feng, 1989 [56]
Baoban V1-8-8 Gold ore Quartz 11.1 1.3 −78.0 234 Feng, 1989 [56]
Baoban V1-8-1 Gold ore Quartz 11.3 −0.6 −71.0 197 Feng, 1989 [56]
Baoban V101-021 Gold ore Quartz 16.1 3.4 −67.0 200 Feng, 1989 [56]
Baoban V101-09 Gold ore Quartz 11.5 4.4 −62.0 292 Feng, 1989 [56]
Baoban 021 Gold ore Quartz 15.1 7.0 −67.0 280 Feng, 1989 [56]
Baoban 09 Gold ore Quartz 11.5 3.4 −62.0 280 Feng, 1989 [56]
Baoban 05 Gold ore Quartz 13.1 5.0 −62.0 280 Feng, 1989 [56]

Erjia J107-1 Gold ore Quartz 13.1 4.2 −64.2 250 Chen, 1996 [57]
Erjia J107-3 Gold ore Quartz 13.5 4.5 −55.0 250 Chen, 1996 [57]
Erjia J107-6 Gold ore Quartz 12.7 3.7 −70.2 250 Chen, 1996 [57]
Erjia J107-8 Gold ore Quartz 12.5 3.6 −59.3 250 Chen, 1996 [57]
Erjia J107-10 Gold ore Quartz 11.3 2.4 −61.4 250 Chen, 1996 [57]
Erjia J107-11 Gold ore Quartz 12.1 3.2 −61.2 250 Chen, 1996 [57]
Erjia A58 Gold ore Quartz 10.4 1.8 −59.0 270 Tu and Gao, 1993 [12]
Erjia A66 Gold ore Quartz 13.2 4.6 −60.0 270 Tu and Gao, 1993 [12]

Bumo BM4-1 Gold ore Quartz 12.2 4.3 −66.3 280 Hou et al., 1996 [16]
Bumo B3-7 Gold ore Quartz 8.8 0.3 −62.0 270 Tu and Gao, 1993 [12]
Bumo B4 Gold ore Quartz 11.6 3.1 −62.0 270 Tu and Gao, 1993 [12]
Bumo B10 Gold ore Quartz 8.1 −5.4 −64.0 180 Tu and Gao, 1993 [12]
Bumo B11 Gold ore Quartz 11.9 −1.7 −65.0 180 Tu and Gao, 1993 [12]
Bumo B20 Gold ore Quartz 9.4 −2.2 −80.0 210 Tu and Gao, 1993 [12]
Bumo B25 Gold ore Quartz 9.8 1.3 −56.0 270 Tu and Gao, 1993 [12]
Bumo B26 Gold ore Quartz 8.8 0.3 −66.0 270 Tu and Gao, 1993 [12]

The S isotope data of pyrites from the Gezhen gold deposits as well wallrocks and
dykes are listed in Table 3 and plotted in Figure 7. The 14 ore samples of the Tuwaishan
gold deposit show δ34S values of +4.5‰ to +7.9‰ with a narrow variation of 3.4‰ and an
average of +6.3‰.

Table 3. Sulfur isotopic data of pyrites from the Gezhen gold deposits, wallrocks, intrusions and dykes.

Gold Deposit Sample Number Lithology Mineral δ34S‰ Sample Size Data Source

Tuwaishan NW-7 Gold ore Pyrite 5.0 This study
Tuwaishan 13JC-11 Gold ore Pyrite 4.5 This study
Tuwaishan 13JC-12 Gold ore Pyrite 7.1 This study
Tuwaishan 13JC-13 Gold ore Pyrite 6.9 This study
Tuwaishan 13JC-16 Gold ore Pyrite 7.0 This study
Tuwaishan 13JC-18 Gold ore Pyrite 6.8 This study
Tuwaishan 13JC-19 Gold ore Pyrite 7.5 This study
Tuwaishan 13JC-27 Gold ore Pyrite 4.5 This study
Tuwaishan 16JC-16 Gold ore Pyrite 7.1 This study
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Table 3. Cont.

Gold Deposit Sample Number Lithology Mineral δ34S‰ Sample Size Data Source

Tuwaishan 16JC-19 Gold ore Pyrite 6.1 This study
Tuwaishan 16JC-25 Gold ore Pyrite 7.9 This study
Tuwaishan 16JC-26 Gold ore Pyrite 6.5 This study
Tuwaishan 16JC-27 Gold ore Pyrite 6.8 This study
Tuwaishan 16JC-30 Gold ore Pyrite 5.0 This study
Tuwaishan No.1 Gold ore Pyrite 6.3 Hou et al., 1996 [16]
Tuwaishan No.6 Gold ore Pyrite 6.4 Hou et al., 1996 [16]
Tuwaishan TV-IV Gold ore Pyrite 6.8 Hou et al., 1996 [16]
Tuwaishan Tj-2l Gold ore Pyrite 6.4 Hou et al., 1996 [16]
Tuwaishan T-55 Gold ore Pyrite 5.2 Hou et al., 1996 [16]
Tuwaishan T-90-2 Gold ore Pyrite 6.5 Hou et al., 1996 [16]
Tuwaishan T-35 Gold ore Pyrite 6.1 Hou et al., 1996 [16]
Tuwaishan T-90-1 Gold ore Pyrite 6.1 Hou et al., 1996 [16]
Tuwaishan T-54 Gold ore Pyrite 7.1 Hou et al., 1996 [16]
Tuwaishan T-56 Gold ore Pyrite 5.6 Hou et al., 1996 [16]
Tuwaishan T-27 Gold ore Pyrite 6.7 Hou et al., 1996 [16]
Tuwaishan B-249 Gold ore Pyrite 8.2 Hou et al., 1996 [16]
Tuwaishan Gold ore Pyrite 5.0–8.2 Unknown Liang, 1992 [10]
Tuwaishan Gold ore Pyrite 4.0–8.2 10 Xia, 2002 [17]

Baoban P202 Gold ore Pyrite 6.7 Tu and Gao, 1993 [12]
Baoban BV30-1 Gold ore Pyrite 6.7 Hou et al., 1996 [16]
Baoban B-470 Gold ore Pyrite 4.0 Hou et al., 1996 [16]

Erjia J107-3 Gold ore Pyrite 6.4 Chen, 1996 [57]
Erjia R5-1 Gold ore Pyrite 6.5 Chen, 1996 [57]
Erjia R5-2 Gold ore Pyrite 6.0 Chen, 1996 [57]
Erjia R1-1 Gold ore Pyrite 5.1 Chen, 1996 [57]
Erjia R1-2 Gold ore Pyrite 5.1 Chen, 1996 [57]
Erjia R2-1 Gold ore Pyrite 3.2 Chen, 1996 [57]
Erjia R2-2 Gold ore Pyrite 3.6 Chen, 1996 [57]
Erjia A16 Gold ore Pyrite 6.8 Tu and Gao, 1993 [12]
Erjia A19 Gold ore Pyrite 6.5 Tu and Gao, 1993 [12]
Erjia A22 Gold ore Pyrite 7.4 Tu and Gao, 1993 [12]
Erjia A24 Gold ore Pyrite 7.2 Tu and Gao, 1993 [12]
Erjia A25 Gold ore Pyrite 6.7 Tu and Gao, 1993 [12]
Erjia A32 Gold ore Pyrite 6.9 Tu and Gao, 1993 [12]
Erjia A34 Gold ore Pyrite 7.5 Tu and Gao, 1993 [12]
Erjia A62 Gold ore Pyrite 7.6 Tu and Gao, 1993 [12]
Erjia HR34 Gold ore Pyrite 6.8 Tu and Gao, 1993 [12]
Erjia HR35 Gold ore Pyrite 6.6 Tu and Gao, 1993 [12]
Erjia EJV-23 Gold ore Pyrite 4.1 Hou et al., 1996 [16]
Erjia Gold ore Pyrite 3.4–7.7 13 Xia, 2002 [17]

Bumo B4 Gold ore Pyrite 4.4 Tu and Gao, 1993 [12]
Bumo B4-1 Gold ore Pyrite 4.2 Tu and Gao, 1993 [12]
Bumo Gold ore Pyrite 4.3–6.4 7 Xia, 2002 [17]

Erjia Baoban
Group rocks Pyrite 3.7–6.8 5 Huang and Ding, 1992 [14]

Tuwaishan TyD3-5 Granitic
mylonites Pyrite 7.8 Hou et al., 1996 [16]

Tuwaishan TyD3-6 Granitic
mylonites Pyrite 6.2 Hou et al., 1996 [16]

Tuwaishan No.21 Granitic
mylonites Pyrite 8.5 Hou et al., 1996 [16]

Erjia Ej-13 Granitic
mylonites Pyrite 8.2 Hou et al., 1996 [16]

Tuwaishan Granitic
mylonites Pyrite 4.1–7.8 Unknown Liang, 1992 [10]
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Table 3. Cont.

Gold Deposit Sample Number Lithology Mineral δ34S‰ Sample Size Data Source

Erjia Granitic
mylonites Pyrite 2.4–8.2 10 Huang and Ding, 1992 [14]

Erjia Metamorphic
basic rocks Pyrite 7.9 Chen et al., 1993 [11]

Tuwaishan Metamorphic
basic rocks Pyrite 7.4–7.9 Unknown Liang, 1992 [10]

Erjia
Diorite

porphyrite
dykes

Pyrite 6.9 Chen et al., 1993 [11]

Baoban P103
Diorite

porphyrite
dykes

Pyrite 6.9 Hou et al., 1996 [16]

Tuwaishan
Diorite

porphyrite
dykes

Pyrite 2.6–3.7 3 Liang, 1992 [10]
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6. Discussion
6.1. Ore-Forming Fluid Source

Many workers have carried out H-O isotope analyses to constrain the fluid source of
the Gezhen shear zone gold deposits, and it has been proposed that a mixture of magmatic
water and metamorphic water with variable contents of meteoric water are most likely the
source for the Gezhen gold deposits [5,10–12,14]. The δDV-SMOW and calculated δ18Owater
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values are from −87.0‰ to −55.0‰ and from −0.1‰ to +8.1‰ for the Tuwaishan gold
deposit [13,16,55,56], indicating a hybrid source for ore-forming fluid [53]. Some researchers
proposed that the ore-forming fluid of the Tuwaishan gold deposit originated from a
mixture of magmatic water and meteoric water [10,13], while some other researchers
argued that a mixture of metamorphic and meteoric water with lesser contribution of
magmatic water could be the source fluid for this deposit [17].

Our new H-O isotopic data for quartz grains separated from 11 ore samples of the
Tuwaishan gold deposit predominantly fall into either the metamorphic water field or the
magmatic water field or the overlap zone between them in the δDH2O vs. δ18OH2O plot
(Figure 6), indicating a mixture of metamorphic and magmatic water for the ore-forming
fluid source [53,58–60]. Meanwhile, half of our new data fall into the typical orogenic gold
fluid field in the δDH2O vs. δ18OH2O plot [54], suggesting the involvement of metamorphic
water in the formation of the Tuwaishan gold deposit [24,54,61,62]. The ore-forming
fluid of the Gezhen gold deposits is characterized as medium temperature (200–380 ◦C),
low salinity (predominantly 3.0%–7.0%NaCleqv), reducing (H2S exists in the gas phase
composition) and CO2 rich [12,13,15,47,63]. It is compatible with metamorphic fluid but is
significantly different from the magmatic fluid [64–67]. Thus, combined with ore-forming
fluid properties and H-O isotopic compositions, it is proposed that the ore-forming fluid of
the Tuwaishan gold deposit is most likely sourced from metamorphic water.

6.2. Sulfur Source

Although there are plenty of available sulfur isotopic data for the Gezhen gold deposits
as well as the wallrocks, intrusions and dykes (Table 3, Figure 7), debates still exist for the
sulfur source of the Gezhen gold deposits. This is partly because the similarity among δ34S
values of the gold deposits, the Baoban Group metamorphic rocks, the granitic mylonites
and the diorite porphyrite dykes (Table 3, Figure 7). Some researchers suggest that the sulfur
was sourced from the magmatic fluid which has interacted with wallrocks of the Baoban
Group metamorphic rocks or the granitic mylonites during its ascending, as the positive
δ34S values of the Gezhen gold deposits are slightly higher than those of the magmatic
fluid, and are close to those of the wallrocks [10,16] (Table 3; Figure 7). However, some
other workers believe that the sulfur was originated from the metamorphism of the Baoban
Group rocks [12,17,68]. The indistinctive positive δ34S values are not fully consistent with
either magmatic fluid or sedimentary fluid [12]. In addition, the narrow variation of δ34S
values for the Gezhen gold deposits indicates a sulfur isotope homogenization during
regional metamorphism [10,17,69–71]. Considering the high gold content of the Baoban
Group rocks as well as their close spatial relationship with the Gezhen gold deposits, many
researchers believe that the metamorphism of the Baoban Group rocks played a key role in
the formation of those gold deposits [12,16,17,68].

Field and microscopic observations suggest that ore minerals of the Gezhen gold
deposits are predominantly sulfides including pyrite, arsenopyrite, sphalerite, galena and
chalcopyrite whereas sulfates are absent [16,47]. Thus, the sulfur isotope compositions
of sulfides should be approximately the same as those of the ore-forming fluid [69,72].
Our new δ34S values of pyrite separates from 14 ore samples from the Tuwaishan gold
deposit show positive values (from +4.5‰ to +7.9‰) with a narrow variation (3.4‰),
which strongly imply a sulfur isotope homogenization caused by regional metamorphism
during the formation of the gold deposit [27,54,70]. Furthermore, the same δ34S values
among the Tuwaishan, Baoban, Erjia and Bumo gold deposits request a common source
for all gold deposits along the Gezhen shear zone (Table 3; Figure 7). Thus, the plagioclase
amphibolites as well as the diorite porphyrite dykes are not likely the sources of sulfur for
the Gezhen gold deposits due to their scattered distribution and limited scales [5,16]. It
is concluded that the sulfur of the Tuwaishan gold deposit, as well as other gold deposits
along the Gezhen shear zone, is originated from regional metamorphism of sources rocks.
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6.3. Genesis and Formation of the Tuwaishan Gold Deposit

The Gezhen gold deposits have been traditionally classified as sedimentary-reworke-
d [10–12] or magmatic-hydrothermal origin [13]. Xu et al. [5] summarized previous studies
on deposit geology, ore-forming fluid characteristics and isotope compositions of the
Gezhen gold deposits and concluded that these gold deposits were best classified as
orogenic in genesis. Our new data on H-O-S isotopic compositions of the Tuwaishan gold
deposit further support the orogenic gold classification not only because the H-O-S isotopic
compositions of the Tuwaishan gold deposit are consistent with those of typical orogenic
gold deposits worldwide [6,54,73,74] (Figures 6 and 7) but also because the comprehensive
interpretations of our new H-O-S isotopic data with ore-forming fluid properties favor a
metamorphic rather than a magmatic origin.

As discussed above, the Tuwaishan gold deposit belongs to orogenic gold deposit
and is most likely sourced from metamorphism. Therefore, the host rocks of the Baoban
Group metamorphic rocks are seemingly the potential sources of both ore-forming fluid
and materials for the Tuwaishan gold deposit as well as other gold deposits along the
Gezhen shear zone. In fact, it has been widely accepted by early researchers on Hainan
gold deposits that the Baoban Group rocks are the source rocks for the Gezhen gold
deposits [5,11,12,14–17]. Accordingly, it has been proposed that the metamorphic fluid
released from regional metamorphism of the Baoban Group rocks mixed with magmatic
fluid or the magmatic fluid that extracted Au from the Baoban Group rocks during its
ascending, which deposited Au and sulfides in appropriate spaces in the Gezhen shear
zone, is the major mechanism of gold mineralization along the shear zone [11,16,17].

However, despite the fact that the Gezhen gold deposits were sourced from metamor-
phism, and the Baoban Group metamorphic rocks are the host rocks, those Mesoproterozoic
basement rocks are not necessarily the source for the Gezhen gold deposits [8]. Based on
the metamorphic devolatilization model for orogenic gold deposits, most of sulfur and Au
would have been released from the source rocks into the metamorphic fluid during the pro-
grade metamorphic transition from the greenschist to the amphibolite facies [23,24,75–77].
This is when the source rocks were first heated through a temperature-pressure window
that broke chlorite, pyrite, organic matter and various other minerals and contributed to
the fluid phase [24]. The Baoban Group rocks together with the Mesoproterozoic mafic
rocks have experienced amphibolite facies regional metamorphism at 1.3–0.9 Ga [18,19,22],
during which time those Mesoproterozoic basement rocks have lost most of their Au and
sulfur [8,24,54,77]. Therefore, the Baoban Group rocks could not be a source for the fluid
and gold for the gold mineralization at ca. 243 Ma along the Gezhen shear zone [8]. Instead,
The Ordovician Nanbigou Formation rocks and the Silurian Tuolie Formation rocks on the
footwall of the Gezhen shear zone have experienced greenschist facies and lower green-
schist facies regional metamorphism, respectively [4,42]. Even through the timing and
duration for this metamorphism have not been well constrained, the continuous amalgama-
tion process from back-arc consumption (272–252 Ma) to orogenic assembly (251–243 Ma)
between the South China and Indochina Blocks represents an important tectono-thermal
event that would promote regional metamorphism in Hainan Island [2,8,78]. Considering
the fact that the Ordovician–Silurian rocks are on the footwall of the reverse Gezhen shear
zone (Figure 2), and the dip angle gradually decreases with increasing depth [9,36], meta-
morphic devolatilization of these rocks at depth would provide a realistic source of fluid,
gold and sulfur for the gold mineralization along the shear zone. Therefore, we propose
that the Ordovician–Silurian rocks on the footwall of the Gezhen shear zone are most likely
the sources of ore-forming fluid and materials for the Tuwaishan gold deposit and other
gold deposits along the Gezhen shear zone.

7. Conclusions

New H-O-S isotopic data of the Tuwaishan gold deposit in Hainan Island are reported
here. In combination with H-O-S isotopic compositions and ore-forming fluid properties of
the Gezhen gold deposits from previous works, this study identified the ore-forming fluid
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and material source characteristics of the Tuwaishan and other gold deposits along the
Gezhen shear zone. Furthermore, with integrated studies on source characteristics, deposit
geology and regional geology of the Gezhen gold deposits, as well as tectonic settings
of Hainan Island, a realistic source has been proposed for the Tuwaishan and other gold
deposits along the Gezhen shear zone. The main conclusions are as follows:

(1) The δD and δ18O values for ore-forming fluid of the Tuwaishan gold deposit are from
−75.9‰ to−54.4‰ and from +3.1‰ to +8.7‰, indicating a source of metamorphic fluid.

(2) The δ34S values for the ore-related pyrites of the Tuwaishan gold deposit are from
+4.5‰ to +7.9‰, reflecting a source of metamorphism for the ore-forming materials.

(3) The Tuwaishan and other gold deposits along the Gezhen shear zone are orogenic
gold deposit that were formed as a result of regional metamorphism.

(4) The Mesoproterozoic basement rocks could not be the source of the Gezhen gold
deposits. Instead, the Ordovician–Silurian rocks on the footwall of the Gezhen shear
zone are most likely the source for the Tuwaishan and other gold deposits along the
shear zone, even though more work is required to confirm such a source.
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