
Journal Menu
► ▼ Journal Menu-
- Metabolites Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserNeed Help?
Announcements
19 August 2025
Metabolites | Selected Papers Published in 2023–2024 Related to Statistical Methods for Metabolomics Data Analysis

We are delighted to share some highly cited papers on statistical methods for metabolomics data analysis research that were published in our journal Metabolites (ISSN: 2218-1989) in 2023 and 2024.
1. “Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine”
by Partho Sen and Matej Orešič
Metabolites 2023, 13(7), 855; https://doi.org/10.3390/metabo13070855
Available online: https://www.mdpi.com/2218-1989/13/7/855
2. “Instrumental Drift in Untargeted Metabolomics: Optimizing Data Quality with Intrastudy QC Samples”
by Andre Märtens, Johannes Holle, Brit Mollenhauer, Andre Wegner, Jennifer Kirwan and Karsten Hiller
Metabolites 2023, 13(5), 665; https://doi.org/10.3390/metabo13050665
Available online: https://www.mdpi.com/2218-1989/13/5/665
3. “Comparison of Compound Identification Tools Using Data Dependent and Data Independent High-Resolution Mass Spectrometry Spectra”
by Rosalie Nijssen, Marco H. Blokland, Robin S. Wegh, Erik de Lange, Stefan P. J. van Leeuwen, Bjorn J. A. Berendsen and Milou G. M. van de Schans
Metabolites 2023, 13(7), 777; https://doi.org/10.3390/metabo13070777
Available online: https://www.mdpi.com/2218-1989/13/7/777
4. “Opening the Random Forest Black Box of 1H NMR Metabolomics Data by the Exploitation of Surrogate Variables”
by Soeren Wenck, Thorsten Mix, Markus Fischer, Thomas Hackl and Stephan Seifert
Metabolites 2023, 13(10), 1075; https://doi.org/10.3390/metabo13101075
Available online: https://www.mdpi.com/2218-1989/13/10/1075
5. “Integrative Analysis of Cytokine and Lipidomics Datasets Following Mild Traumatic Brain Injury in Rats”
by Alexis N. Pulliam, Alyssa F. Pybus, David A. Gaul, Samuel G. Moore, Levi B. Wood, Facundo M. Fernández and Michelle C. LaPlaca
Metabolites 2024, 14(3), 133; https://doi.org/10.3390/metabo14030133
Available online: https://www.mdpi.com/2218-1989/14/3/133
6. “md_harmonize: A Python Package for Atom-Level Harmonization of Public Metabolic Databases”
by Huan Jin and Hunter N. B. Moseley
Metabolites 2023, 13(12), 1199; https://doi.org/10.3390/metabo13121199
Available online: https://www.mdpi.com/2218-1989/13/12/1199
7. “The Omics Dashboard for Interactive Exploration of Metabolomics and Multi-Omics Data”
by Suzanne Paley and Peter D. Karp
Metabolites 2024, 14(1), 65; https://doi.org/10.3390/metabo14010065
Available online: https://www.mdpi.com/2218-1989/14/1/65
8. “metabCombiner 2.0: Disparate Multi-Dataset Feature Alignment for LC-MS Metabolomics”
by Hani Habra, Jennifer L. Meijer, Tong Shen, Oliver Fiehn, David A. Gaul, Facundo M. Fernández, Kaitlin R. Rempfert, Thomas O. Metz, Karen E. Peterson, Charles R. Evans et al.
Metabolites 2024, 14(2), 125; https://doi.org/10.3390/metabo14020125
Available online: https://www.mdpi.com/2218-1989/14/2/125